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Nonlinear Band Gap Transmission in Optical Waveguide Arrays
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The effect of nonlinear transmission in coupled optical waveguide arrays is theoretically investigated
and a realistic experimental setup is suggested. The beam is injected in a single boundary waveguide,
linear refractive index of which (n0) is larger than refractive indexes (n) of other identical waveguides
in the array. Particularly, the effect holds if !�n0 � n�=c > 2Q, where Q is a linear coupling constant
between array waveguides, ! is a carrier wave frequency, and c is a light velocity. Numerical
experiments show that the energy transfers from the boundary waveguide to the waveguide array
above a certain threshold intensity of the injected beam. This effect is due to the creation and the
propagation of gap solitons in full analogy with a similar phenomenon in sine-Gordon lattice [F. Geniet
and J. Leon, Phys. Rev. Lett. 89, 134102 (2002)].
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FIG. 1. Suggested experimental setup: The beam is injected
into the boundary waveguide numbered as j � 0, Q0 is a linear
coupling between boundary and first waveguides, and Q is a
coupling constant between the waveguides in the array. n0 and
n are linear refractive indexes of boundary and array wave-
effect is opposite to the ordinary case when for low
intensities (linear regime) the light injected into the

guides, respectively; z is a longitudinal space dimension play-
ing a role of time in the boundary driven DNLS equation (1).
Nonlinear phenomena in a large diversity of physical
systems have a close relation with each other because the
nonlinear dynamics can be described only within a few
theoretical models [1]. Thus there exists a possibility to
predict novel effects in realistic physical systems via
modeling similar processes in simple hypothetical sys-
tems, namely, chains of coupled nonlinear oscillators
could be used for this purpose. For instance, as recently
discovered by Geniet and Leon [2], nonlinear supratrans-
mission phenomenon takes place in the discrete sine-
Gordon lattice. This means that by driving harmonically
and continuously one end of the lattice with frequencies
within a band gap there is no energy flow through the
lattice for low amplitude driving, while above a definite
driving amplitude threshold a sudden energy flow takes
place. This nontrivial effect has been explained by means
of the direct soliton creation at the end of the lattice; in
other words the sudden energy flow occurs when the
driving adjusts the internal oscillations of the localized
object. It was also noted the possibility of the existence
of a similar mechanism of a gap soliton generation in
photonic band gap materials. It should be especially men-
tioned that nonlinear supratransmission has been de-
tected not only by making numerical simulations for the
model system of the discrete sine-Gordon lattice, but it is
also experimentally realized on a mechanical pendulums
chain driven at one end at band gap frequencies [2].

The present Letter aims to analyze whether a similar
scenario takes place in the case of the discrete nonlinear
Schrödinger (DNLS) equation and then to make predic-
tions concerning the corresponding nonlinear processes
in coupled optical waveguide arrays [3]. The experimen-
tal conditions are suggested for which the optical wave-
guide array becomes transparent with respect to the beam
injected into the single boundary waveguide if the beam’s
intensity exceeds a certain threshold (see Fig. 1). This
0031-9007=04=92(6)=063905(4)$22.50 
single waveguide spreads to other waveguides, while in
the nonlinear case the light is trapped into several neigh-
boring waveguides thus leading to the spatial discrete
optical breather creation (see, e.g., the most recent experi-
mental papers on the subject [4]). It should be mentioned
that the longitudinal space dimension in an optical wave-
guide array plays a role of a time variable, and one should
take special note of this when suggesting real experi-
ments on waveguide arrays.

Let us begin by considering the boundary driven
DNLS equation which could be written in the following
form (j � 1; . . . ; N):

i
@ j
@z

�  j�1 �  j�1 � 2j jj2 j � 0;  0 � Aei�z:

(1)

Here the z variable stands for time; � and A are the
driving frequency and amplitude of the boundary, respec-
tively. The initial condition reads as  j�0� � 0; it is sup-
posed that the driving is turned on adiabatically, e.g.,
A � A0�1� exp��z=��� in order to avoid the appearance
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of the perturbations from the initial shock. In simulations
� � 10 and the nonlinear dynamics is monitored up to
time scales 104; thus in a stationary regime (z	 �) one
has A � A0. The damping also has been applied at the
right end of the waveguide array in order to suppress edge
reflection. Note that in the absence of driving the sum of
intensities

PN
j j jj

2 is a conserved quantity, thus the non-
linear dynamics across the array could be described via
intensity flux Jj through the site j:

Jj � i� j 


j�1 �  


j j�1�; (2)

where the intensity and intensity flux at site j are con-
nected with each other via the discrete continuity con-
dition dj jj2=dz� �Jj � Jj�1� � 0.

The numerical simulations have been performed
choosing different values of the boundary driving pa-
rameters � and A. From the numerical experiments it
follows that boundary driving leads to the perturbation of
all sites if the driving frequency � is located within the
linear phonon band �2< �< 2, i.e., there is a nonzero
intensity flux for any driving amplitudes (see Fig. 2). On
the other hand if the driving frequency is in an upper
band gap, particularly � > 2, for low driving amplitudes
only several neighboring sites are excited and the inten-
sity flux to remote sites is zero. The energy starts to flow
only if the driving amplitude exceeds a certain threshold
(see Fig. 3). Note that if the driving frequencies are
within a lower band gap there is no intensity flow for
any driving amplitudes. Now it is time to analyze the
mechanisms for that effect.

As far as boundary driving is applied it is natural to
expect that localized solutions will excite. This statement
is in full accordance with the consideration of a similar
process in discrete sine-Gordon type models where the
nonlinear supratransmission has been discovered [2].
Thus one can assume that the nonzero intensity flux
will appear when the boundary driving excites moving
localized solutions. It is easy to derive a semidiscrete
approximate envelope soliton solution substituting the
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FIG. 2 (color online). Three dimensional plot of time evolu-
tion of the boundary driven DNLS equation for inband driving
frequency � � 1:94 and the very small driving amplitude A0 �
0:01. As seen, the intensity transmits to remote sites.
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ansatz  j � ��j� expfi��z� �j�g into the DNLS equa-
tion (1). Assuming that the envelope ��j� varies smoothly
along the lattice and expanding ��j
 1� about the site j,
we then get the following approximate one soliton solu-
tion (see, e.g., Ref. [5] for details of a similar derivation):

 j �
j jjmax

cosh�j jjmax�j� Vz��
ei��z��j�; (3)

with a following nonlinear dispersion relation for
the carrier wave of the envelope soliton (� varies from
0 to 2�)

� � 2 cos�� j jj2max; (4)

and V � @�=@� � �2 sin� is a soliton’s group velocity.
FIG. 3 (color online). Same as in Fig. 2 for band gap driving
� � 2:04. For driving amplitudes below the threshold (Ath �
0:202) the pattern in the upper graph could be described by the
standing breather solution (7), while for the driving amplitudes
above the threshold (lower graph) the transmission could be
described by a train of gap solitons (3). The inset shows the
dependence of the driving threshold upon the driving fre-
quency; the asterisks are the results of the numerical simula-
tions on boundary driven DNLS equation (1) and the solid line
represents an analytical curve (6). The dashed line divides the
range of A0 (left-hand side) for which an analytical approxi-
mate semidiscrete approach is given by formulas (3) and (7).
Moreover within the same range above a threshold, low am-
plitude semi-discrete envelope solitons participate in band gap
transmission (see lower graph). At the right side of the dashed
line in the inset high amplitude moving breathers are excited,
which are further trapped by the lattice (see Fig. 4), which
leads to the suppression of band gap transmission.
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FIG. 4 (color online). Trapping of large amplitude moving
gap soliton. For relatively large driving amplitudes the soliton
starts to move but further the lattice traps it. This in itself stops
the transmission process.
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Note that the assumption that the soliton envelope varies
smoothly along the lattice puts the following restriction
on the soliton amplitude j jj2max � 1.

It is expected that intensity flux appears in the system
if driving adjusts the nonlinear dispersion relation (4),
i.e., � � � and j jjmax � A0. In other words, flux is
nonzero only if one can find such � that the following
condition is fulfilled: � � 2 cos�� A2

0. Therefore for
inband driving �2<�< 2 the nonzero flux appears
even for very low driving amplitudes A0, while in an
upper band gap

� > 2; (5)

there exists a certain amplitude threshold

Ath �
�������������
�� 2

p
(6)

below which (A0 <Ath) there is no intensity flux into the
system. Instead, only several sites are excited and that
pattern could be described [6] by a static breather solution
of Eq. (1). This solution could be derived from the general
one (3) for zero velocity V � �2 sin� � 0, i.e., � � 0
and requires the fulfillment of the boundary condition
 0 � A0 exp�i�z� in the stationary state (z	 �):

 j �

�������������
�� 2

p

cosh��j� x0�
�������������
�� 2

p
�
ei�z; (7)

where x0 � acosh�
�������������
�� 2

p
=A0�=

�������������
�� 2

p
.

The results of numerical simulations are fully ex-
plained by the above consideration. The Fig. 3 inset
presents the comparison between numerical experiments
on Eq. (1) and the analytical formula (6) for the driving
threshold above which (A0 > Ath) a nonzero intensity flux
appears in the system. For driving frequencies � close to
2 there is a perfect agreement, but this agreement be-
comes worse for larger driving frequencies. The point is
that for driving frequencies sufficiently larger than 2
threshold amplitudes become comparable with unity ac-
cording to the relation (6). But for such amplitudes the
continuum envelope approximation (3) is invalid. More-
over, as numerical simulations show large amplitude ex-
citations are trapped by the lattice (see Fig. 4); as a result
the localizations do not move and intensity flux becomes
zero. Thus the band gap transmission effect exists if there
are moving solutions in the system. As a result in the case
of the DNLS equation the discovered phenomenon is
observable for driving frequencies 2< �< 2:09.

Now let us discuss how the obtained results could be
applied to describe nonlinear transmission processes in
the system of coupled optical waveguides. To realize a
band gap driving it is suggested (see Fig. 1) to inject a
beam into the boundary waveguide with the linear re-
fractive index n0 larger than the refractive index n of
other waveguides forming the array. Let us introduce a
linear coupling constant between array waveguides as Q,
while the coupling between boundary (j � 0) and first
waveguides is defined as Q0. Besides that, let us suppose
063905-3
for simplicity that the nonlinear refractive index (Kerr
nonlinearity) in the j � 0 waveguide is equal to zero and
the onsite nonlinear refractive index in array waveguides
is D. Thus the wave envelopes in waveguides could be
described by a set of the following equations (j �
2; . . . ; N):

i
@ 0

@z
�
!
c
n0 0 �Q0 1 �0;

i
@ 1

@z
�
!
c
n 1 �Q0 0 �Q 2 �Dj 1j

2 1 � 0;

i
@ j
@z

�
!
c
n j �Q� j�1 �  j�1� �Dj jj

2 j � 0;

(8)

where ! is a carrier wave frequency and c is a light
velocity. The last equation from the set (8) is a well-
known representation of the infinite waveguide array by
the DNLS equation [3], while the first two equations
describe the influence of the boundary waveguide (with
a different linear refraction index) on the semi-infinite
array (see also Ref. [7]). After the appropriate rescaling

 j �  0
je
iz!n=c

�������������
2Q=D

p
for j � 1; . . . ; N; (9)

 0 �  0
0e
iz!n=c�Q=Q0�

�������������
2Q=D

p
; z � z0=Q:

Equations (8) obtain a simpler form [� � !�n0 �
n�=Qc]:

i
@ 0

0

@z0
� � 0

0 �
Q2

0

Q2  
0
1 � 0;

i
@ 0

j

@z0
� � 0

j�1 �  0
j�1� � j 0

jj
2 0

j � 0

(10)

(j � 1; . . . ; N) which reduces to the boundary driven
DNLS (1) with the boundary condition  0

0 �
 0
0�0� exp�i�z

0� in the limit �Q0=Q� ! 0; therefore for
Q0=Q� 1 one can use the results derived for the case
063905-3



FIG. 5 (color online). Rescaled waveguide intensity j 0
jj
2 in

the band gap transmission regime. The inset shows longitudinal
dimension z0 dependence of rescaled beam intensity in the
boundary waveguide. In creating the solitons the intensity
from the boundary waveguide is transferred to other wave-
guides and as a result the transmission stops when the beam
intensity in the boundary waveguide goes below the threshold.
The simulations are done for Q0=Q � 0:1.
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of the boundary driven DNLS (5) and (6). Particularly,
for

� � !�n0 � n�=Qc > 2; (11)

the localized excitations (3) and (7) form with the propa-
gation constant located in the upper band gap � � � >
2. Thus if the injected intensity in the boundary is below
the threshold

j 0�0�j
2
th �

2Q3

DQ2
0

j 0
0�0�j

2
th ’

2Q2

DQ2
0

�
�n0 � n�!

c
� 2Q

�
;

(12)

one has a static breather solution (7) and the intensity flux
to the array waveguides is equal to zero, while above the
threshold energy transmission begins via gap solitons (3).

The above expression for the threshold (12) becomes
exact in the limit �Q0=Q� ! 0. For small but nonzero
�Q0=Q� the beam intensity in the boundary waveguide
could be considered almost a constant quantity irrespec-
tive of the spread of energy in the nonlinear band gap
transmission regime, because according to the rescaling
beam, intensity in the boundary waveguide is Q=Q0

times larger than the amplitude of the propagating soliton
through the array. In the case when Q0 becomes compa-
rable with Q almost all intensity in the boundary wave-
guide is needed to form a soliton. As a result the intensity
in the boundary waveguide sharply decreases and there-
fore a much larger threshold intensity is needed [than
given by relation (12)] to develop the nonlinear trans-
mission in the band gap regime. In Fig. 5 is presented the
picture for the caseQ0=Q � 0:1. As can be seen the beam
intensity in the boundary waveguide is above the thresh-
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old at the origin z0 � 0, and it produces gap solitons
causing the band gap transmission. However, this process
itself causes the decrease of the beam intensity in the
boundary waveguide; the intensity after the creation of
several solitons goes below the threshold and the trans-
mission process is not observable for large z0.

As discussed earlier the nonlinear band gap transmis-
sion regime holds if one has low amplitude solitons.
Large amplitude solitons tend to pin and energy transfer
becomes much less effective. However, this is true only in
the case of the DNLS equation where only on-site non-
linearities are taken into account. As shown recently [8],
considering also the terms describing intersite nonline-
arities, one has moving breather solutions even at large
excitation amplitudes. High intensity moving breathers
have also been detected on the recent experiments [4]. The
numerical simulations have been undertaken adding to
the DNLS equation the terms with intersite nonlineari-
ties. In this case the energy transfer via the moving
breathers takes place even for large excitation amplitudes,
and as a result the optical transparency regime is observ-
able in the whole range of � > 2.

Summarizing, it should be noted again that the novel
scenario of the nonlinear band gap transmission in
optical waveguide arrays is predicted and a simple ex-
perimental setup is suggested for its realization. The
suggested experimental setup would serve also for
the generation of optical gap solitons propagating across
the waveguide array.
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