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Anomalous Propagation Loss in Photonic Crystal Waveguides
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Propagation loss can occur in photonic crystal waveguides without complete optical confinement. We
employ a highly efficient transfer-matrix method which allows for accurate and reliable extraction of
the propagation loss even at an extremely low level. The results for a two-dimensional photonic crystal
waveguide shows that the loss exponentially decays via the waveguide wall thickness. An anomalous
phenomenon is found where the loss for guided modes near the upper band gap edge can be several
orders of magnitude smaller than that for modes in the middle of the band gap. This anomaly can be
well explained by the localization degree of guided modes at different frequency domains.
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FIG. 1. Schematic configuration of light propagation in a 2D
PC waveguide solved by the TMM approach. Two perfect
guided mode is calculated approximately by relating it
with the time-domain damping factor for a unperturbed

absorption layers (PALs) are placed at the boundaries of the
supercell to account for wave leakage.
In recent years photonic crystal (PC) waveguides have
attracted extensive interest in the hope of building an
ultrasmall optical integrated circuit on the platform
of photonic crystals [1–7]. A PC waveguide can effi-
ciently manipulate the propagation of electromagnetic
(EM) waves at subwavelength sizes. Lossless propaga-
tion of EM waves can be realized in ideal PC waveguides
either through photonic band gap (PBG) effects in pure
two-dimensional (2D) or 3D crystals [1–3] or through
hybrid mechanisms of the PBG and index guiding in a 2D
PC slab waveguide [4–7]. However, propagation loss al-
ways occurs in a realistic PC waveguide, leading to
exponential decay of wave when it travels, either because
of limited cladding wall thickness or because of scatter-
ing by nonuniformity and roughness [4–8]. There have
been many experimental [4–7] and theoretical [9–14]
efforts to measure, evaluate, and understand the propaga-
tion loss in a realistic PC waveguide, in a hope to find
ways to reduce the propagation loss to a level as low as
possible.

In principle, the propagation loss should be monitored
in real space by looking at the decay pattern of EM fields
along the waveguide. In experiment, this can be done by
changing the length of a PC waveguide and recording the
output power [4–7]. In theory, one can adopt a fixed-
length waveguide and see how an input wave decays when
it travels along the channel. If the propagation loss is
weak, a very long waveguide is necessary to extract a
reliable value of decay constant, and this results in a
serious numerical burden since it is proportional to the
waveguide length. For this reason, only waveguides with
a relatively high loss have been studied by rigorous 3D
numerical simulations [5,14]. To relieve this theoretical
difficulty, other indirect schemes are adopted, such as the
time-domain damping techniques [9,10], coupled-mode
theory [11], and perturbation techniques [12,13]. In most
of these approaches, the true decay constant � for a
0031-9007=04=92(6)=063904(4)$22.50 
lossless guided mode through the group velocity of the
guided mode.

In this Letter we employ a highly efficient plane-wave
based transfer-matrix method (TMM) [15,16] to directly
solve the decay constant � for a guided wave traveling
along a PC waveguide. The numerical burden of this
approach does not depend on the waveguide length, and
therefore can efficiently handle PC waveguides with low
propagation loss. A supercell is adopted to describe the
quasi-1D PC waveguide. In order to account for realistic
wave leakage in a lossy waveguide, perfect absorption
layers (PALs) are placed at the boundaries of the super-
cell, so that all waves impinging on the boundaries are
nearly 100% absorbed, and no cross talk between adjacent
supercells can occur. Figure 1 displays the geometry of a
2D PC waveguide structure that we discuss in this Letter.
The waveguide has a finite wall thickness (each occupy-
ing Nw unit cells), and so wave leakage can happen for an
otherwise perfectly confined guided wave. The optical
properties of this waveguide can be characterized by
three parameters, !, k, and �.
2004 The American Physical Society 063904-1
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FIG. 2. KKR calculation results for the field pattern along the
waveguide axis excited by an external monochromatic point
source at different frequencies and different waveguide wall
thicknesses.
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In the TMM, the EM fields at the left and right hand
sides of any supercell (denoted by a dashed rectangle in
Fig. 1) are described by column vectors consisting of
coefficients of forward and backward propagating plane
waves as �0 � ���

0 ;�
�
0 �

T and �1 � ���
1 ;�

�
1 �

T . It can
be shown [15,16] that they are connected by a transfer
matrix T,

�1 � T�0: (1)

Because of the periodicity, the fields after traveling
through n unit cells are given by

�n � Tn�0; (2)

where �n � ���
n ;��

n �
T . Obviously the unit-cell transfer

matrix T plays a key role in determining the propagation
behavior of the wave in the waveguide. To see this more
clearly, suppose that �0 is an eigenmode of T, and the
corresponding eigenvalue is �. From Eq. (2) we have

�n � �n�0: (3)

The field is still an eigenmode of the waveguide, but
witnesses a factor �n. For a truly guided mode in a PC
waveguide with perfect confinement, � is just the Bloch’s
phase factor � � eikz (j�j � 1), and lossless propagation
can be seen from Eq. (3). On the other hand, if � �
eikz��z, where � > 0, one gets j�j< 1. Then this corre-
sponds to a decaying guided mode, and � is the decay
constant for this mode. The above analysis has led to a
simple yet elegant way to rigorously and quantitatively
evaluate the propagation loss of a PC waveguide: Solve
the transfer matrix T for a unit supercell of the PC
waveguide system involving PALs at the boundaries,
and pick up the decaying eigenmodes. Usually a lossy
PC waveguide can support many decaying modes. The
ways different decaying modes are excited by an external
input wave can be investigated in the same TMM frame-
work [16]. General speaking, the propagation loss of the
waveguide is mainly determined by the least lossy mode
with minimum decay constant �. A great advantage of
this scheme is that the numerical burden does not have
any dependence on the waveguide length.

Now we turn to the 2D PC waveguide displayed in
Fig. 1. The background photonic crystal is made from a
square lattice of dielectric cylinders with a lattice con-
stant a, refractive index n � 3:4, and radius r � 0:18a
embedded in air. This crystal has a complete E-
polarization band gap at frequencies [in units of
�2�c=a�] from 0.302 to 0.443. The waveguide is created
by removing a single row of cylinders along the (01)
crystalline direction. A perfect waveguide with infinitely
thick walls can support a single wide band of lossless
guided modes. The band starts from a cutoff at k � 0
(! � 0:312) and extends straight upwards into the upper
band edge. If the waveguide wall is not sufficiently thick,
there will be a nonvanishing probability that the confined
063904-2
guided wave can tunnel through the walls and couple into
the radiation modes in the air background, leading to
propagation loss.

We first use a multiple scattering approach [17] similar
to the familiar Korringa-Kohn-Rostoker (KKR) method
to visualize the decay feature by looking at the field
pattern along the waveguide axis at a certain excitation
frequency. The waveguide is excited by an external
E-polarized monochromatic point source placed in colli-
mation to the waveguide axis. To see how the loss depends
on the waveguide wall thickness, we have changed Nw
from 1 to 5. Because of the limit of the computation
source, the maximum waveguide length is 200 unit
cells, and the maximum cylinder number is 2000 in our
calculation.

Figure 2 displays several typical examples of the
KKR simulation result for the field pattern along the
waveguide axis. Three excitation frequencies 0.32, 0.37,
and 0.43 are chosen, and they locate at the lower, middle,
and upper parts of the guided-mode band (also the band
gap), respectively. Several significant features can be
found. First, the field profile can well be described by an
exponential-decay function, a natural result when wave
leakage occurs. For instance, for Nw � 1, the decay con-
stant � (in units of a�1) can be found by curve fitting to be
0.321, 0.0754, and 0.0038 at frequencies 0.32, 0.37, and
0.43, respectively. Second, the loss is reduced when the
waveguide wall becomes thicker, also a natural result. For
Nw � 2, � reduces to 0.071, 5:5� 10�3, and 9:2� 10�4

at the three frequencies, while for Nw � 3, they become
0.0117, 3:9� 10�4, and 1:3� 10�5, respectively. Third,
the loss is reduced when the frequency changes from the
063904-2
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lower end of the guided-mode band to the upper end.
Finally, there exists remarkable interference in the wave-
guide induced by the reflection from the waveguide exit,
especially in the low loss situations. Because of the
interference, a single exponential-decay description of
the field profile becomes less accurate, and this leads to
some uncertainties in extracting the decay constant when
it is in low level. This difficulty can be solved by adopting
a much longer waveguide, for instance, a 5000 unit-cell
long waveguide might be adequate to acquire the accurate
decay constant value for Nw � 3 and ! � 0:43. However,
the numerical burden will become intolerable. Following
the above procedures, we have been able to plot the over-
all decay picture for the whole guided-mode band at
different wall thicknesses. This is summarized in
Figs. 3(b) and 3(c) by solid circular dots. It is seen that
� monotonically decreases with respect to both the ex-
citation frequency and the wall thickness, both approxi-
mately following an exponential-decay law.

The difficulty induced by the rapidly growing numeri-
cal burden in the KKR simulation for a longer waveguide
can be overcome by the above TMM. To facilitate the
numerical stability and convergency, which is of vital
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FIG. 3. (a) TMM calculation results of the dispersion for
waveguides with different wall thicknesses. For the sake of
easier viewing, the curves are offset alternately. (b),(c) Overall
pictures for the propagation loss as a function of the excitation
frequency and the waveguide wall thickness calculated by both
the TMM and KKR approaches.
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importance for unambiguous extraction of the decay
constant of an extremely low loss waveguide, we place
special metallic plates at the supercell boundary to serve
as PALs [18]. The permittivity � of each metallic plate
gradually increases from 1 at the inner surface (adjacent
to air background) to 1� 1:7i at the boundary. The plate
is two unit cells thick in each supercell. This nearly
adiabatic variation of � can guarantee almost 100% ab-
sorption by the metal. For instance, EM waves at ! �
0:35 normally incident on this metallic plate will witness
a 0.5% reflection, 0.1% transmission, and 99.4% absorp-
tion. The metallic plate, indeed, can effectively prevent
cross talk between adjacent supercells.

We have considered different waveguides with wall
thicknesses from Nw � 1 to 5, and correspondingly super-
cell sizes of 9a, 11a, 13a, 15a, and 17a are adopted in the
simulations. Eleven plane waves per unit cell are used,
and good numerical convergence has been reached. The
reason is that an optimum Fourier expansion rule has
been available for the current problem concerning the
E-polarization mode [15] even if metallic materials are
involved in the structure. The calculation results for the
decay constant as a function of the excitation frequency
and the wall thickness are displayed in Figs. 3(b) and 3(c)
by open square dots. The overall agreement with the
KKR simulation results is excellent, indicating that the
proposed TMM is quite efficient for this purpose of
propagation loss solution. There is no difficulty in extract-
ing reliable values of an extremely low loss (as small
as 10�8) in a waveguide with thick walls. This low loss
level is beyond the scope of any other numerical ap-
proaches. Note that for a lossless waveguide, the calcu-
lated decay constant can be lower than 10�11. The
TMM can also yield the propagation wave vector k as a
function of ! for a waveguide. This can be found in
Fig. 3(a) for different wall thicknesses. As a reference,
the dispersion for a perfect PC waveguide with infinitely
thick walls is also shown. The dispersion of all wave-
guides with finite wall thickness almost resembles that
of a perfect waveguide, indicating that the wave propa-
gation behavior in these waveguides is close to that in a
perfect waveguide. The only exception occurs at Nw � 1
and at !< 0:36, where appreciable deviation from the
perfect-waveguide behavior is found. This is not hard to
understand because this thin-wall waveguide can hardly
be called a PC waveguide.

There are two significant points that one can find from
the overall loss pictures shown in Fig. 3. First, the propa-
gation loss essentially decays exponentially with respect
to the cladding wall thickness of the waveguide. This
phenomenon is not hard to understand, since within the
band gap, the transmission is an exponential-decay func-
tion of the crystal thickness. The second thing turns out
to be a surprising anomaly, where the propagation loss
largely decays monotonously with respect to the excita-
tion frequency, almost following an exponential-decay
063904-3
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FIG. 4. Calculated field profile at three lines perpendicular to
the waveguide axis at different frequencies. The line z � 0
passes through the center of cylinders.
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law. The fact that the loss is far enhanced at the lower end
of the guided-mode band (around the waveguide cutoff)
is also not hard to understand because the group velocity
here is much smaller than in other frequency domains.
However, the observation that the loss around the upper-
end region can be several orders of magnitude smaller
than in the middle region of the band (also the center of
the band gap) is not easy to swallow, as the group veloci-
ties are in almost the same level. In fact, the conventional
wisdom holds that the wave attenuation through a pho-
tonic crystal slab should be maximum at the middle of the
band gap, and this has been verified by many wave trans-
mission experiments. Therefore, the wave leakage proba-
bility should be smaller here than in the two ends of the
guided-mode band.

To understand the observed seemingly contradictory
loss behavior, we look at the field profile of the guided-
mode supported in a perfect PC waveguide. Figure 4
displays the results calculated by means of a plane-wave
expansion method [19] along three lines perpendicular to
the waveguide axis. The trend of increasing wave local-
ization around the waveguide axis from lower frequencies
to higher frequencies is obvious. As tighter localization
means that the guided wave is subject to smaller influence
when removing the outer shell of cylinders, it becomes
harder and harder for the wave to leak out of the wave-
guide when ! increases from 0.315 to 0.37, and to 0.43.We
believe that this surprising localization behavior is the
main source behind the observed anomalous loss phe-
nomena. This anomaly can provide a hint to design a
low loss waveguide within a photonic crystal exhibiting
a complete band gap but with limited cladding wall
063904-4
thickness due to, say, microfabrication difficulty. One can
choose to operate the waveguide at a frequency domain
near the upper band edge rather than in the middle of the
band gap. We expect that this feature can also exist in a
3D photonic crystal waveguide [8].

In conclusion, we have employed a highly efficient
TMM approach to investigate the propagation loss in a
PC waveguide without complete wave confinement be-
cause of limited cladding wall thickness. As the numeri-
cal burden does not depend on the waveguide length, this
method allows for accurate and reliable extraction of the
propagation loss even at an extremely low level. An
anomalous loss phenomenon is found where the loss for
guided modes near the upper band edge can be several
orders of magnitude smaller than that for modes in the
middle of the band gap, and it is attributed to a different
localization degree of the guided mode at different fre-
quency domains. This feature can help to design a low
loss PC waveguide.
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