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Relativistic Generation of Isolated Attosecond Pulses in a A3 Focal Volume
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Lasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (A3) can
create relativistic intensity with maximal gradients, using minimal energy. With particle-in-cell
simulations we found, that single 200 attosecond pulses could be produced efficiently in a A> laser
pulse reflection, via deflection and compression from the relativistic plasma mirror created by the pulse
itself. An analytical model of coherent radiation from a charged layer confirms the pulse compression
and is in good agreement with simulations. The novel technique is efficient ( ~ 10%) and can produce
single attosecond pulses from the millijoule to the joule level.
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The generation of subfemtosecond pulses has been
proposed [1] and demonstrated [2] using laser atom inter-
action in the nonperturbative regime in gases at inten-
sities of the order of 10'* W/cm?. In this domain
attosecond pulses may be generated, but even with quasi-
periodic phase matching [3] produce efficiency far be-
low a percent. It may, however, be possible that higher
intensity coupled with dense plasma and relativistic ef-
fects could generate attosecond pulses with very high
efficiency.

We have recently produced relativistic intensity in the
kHz regime with short pulses of less than 10 fs [4],
composed of only a few cycles, focused on a single wave-
length spot size [5]. In this case, the entire laser pulse
energy is contained within a focal volume of few A3. This
has become known as the A3 regime.

Driven relativistically, electrons acquire a quiver en-
ergy exceeding their rest mass energy m,c>. When con-
sidering relativistic laser interactions, it is convenient to
express intensity in terms of the normalized vector po-
tential ay = elA|/m,c>. With ay, > 1 corresponding to
intensities above 2 X 10'® W/cm? for 0.8 um light, the
plasma dielectric constant must take relativistic effects
into account. Accordingly, € = 1 — w?,/yw?, where y =
(1 +ad)'/? with @,y = (47Tneoez/mj'/2.

The relativistic effect on € has mainly been studied
in subcritical density plasmas conditions, that is in
refraction— commonly known as relativistic self-
focusing—where the laser wave front is modified due to
the dielectric constant dependence on a. This effect was
discussed by Litvak [6] and Max et al. [7]. It was observed
with excimer lasers [8] and with CPA lasers [9]. Mourou
et al. [10] proposed, that this effect could be studied in the
A3 regime, provided that the numerical aperture of the
relativistic filament is matched with that of the focusing
optics. This regime has the advantage that it requires only
millijoule energies which are easily produced at kilohertz
repetition rates [2-5].

We suggest that the concept of the relativistic self-
focusing be extended from refraction to reflection and de-
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flection for the case when the A3 laser pulse interacts with
an overcritical density plasma. For a; > 1 the light pres-
sure can significantly modify the shape and motion of the
reflecting surface of the plasma which in turn will change
the reflected wave front. We discovered by particle-in-cell
(PIC) simulations that the plasma mirror produced by the
laser pulse can be deflective enabling us to isolate single
attosecond pulses. By using the appropriate optics this
effect can be used to make a subperiod cut from the bulk
pulse to obtain isolated subfemtosecond pulses.

It is crucial to operate in the A* regime for the fol-
lowing reasons: (i) The driving beam should consist of
well corrected and tightly focused fundamental fre-
quency light, that allows one to limit wave front distor-
tions and work with the coherently reflected radiation.
(i1) Using only a few optical cycles makes possible a
better discrimination between the initial collective action
of electrons and their complex response to successive
cycles. (iii) The narrow focus impresses a strong slope,
increasing the angular separation of the reflected electro-
magnetic energy.

Two more effects should be mentioned. First, deforma-
tion of the plasma profile results in significant changes of
the local incidence angle (defined to be the angle between
the original wave front and the deformed reflecting sur-
face). To enhance this effect the plasma density n, must
be slightly overcritical, making the critical density sur-
face more responsive to light pressure. Second, charge
separation produces an electric field which is mostly
normal to the plasma reflecting surface. Through these
two effects we come to one more relativistic effect, which
is the most important for us: along with the intense and
coherent relativistic electron motion in the direction per-
pendicular to the wave vector of the reflected wave k,,
which is responsible for the magnitude of the reflected
wave, there must be also the coherent motion parallel
to k,, which, according to the Doppler effect, should
be responsible for dramatic shortening or elongation of
the reflected pulse, depending on the sign of the parallel
velocity.
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Relativistic effects in supercritical plasmas have been
discussed in their application to the generation of har-
monics [11-13] and attosecond pulse trains [14] by
weakly and tightly [13] focused long pulses. For the
relativistic A* regime discussed here, the Doppler phase
compression becomes so significant that the reflected
wave is disseminated in several pulses propagated in
different directions, instead of being the quasiperiodic
wave propagating in one direction.

To demonstrate this, we perform fully relativistic
2D PIC simulations, and study the highly nonlinear
regime of the reflection. The PIC code integrates,
self-consistently, Maxwell’s equations and relativistic
equations of motion for electrons and ions [15]. The
computation box is 20A X 20A, with spatial resolution
as high as 100 cells per A. To resolve the density gradient
we take 16 electrons and 16 ions per cell.

A linearly polarized laser pulse with its electric field
along y direction has been initiated at the left boundary
(x = —14) in vacuum and focused to a 1A spot normal to
the plasma layer. The laser pulse has a Gaussian profile
and a duration equal to 5 fs (=2 cycles, full width at half
maximum). The maximal intensity in the focus is I =
2 X 10" W/cm?. For A = 0.8 um this corresponds to the
dimensionless amplitude a; = 3. The preionized plasma
layer has a uniform profile, of thickness 27, and density
1.5n,. The electron-ion collision frequency is negligible:
v,; =108 s7! << w. We choose ¢ = 0 to be the instant
when the peak of the pulse envelope reaches the plasma
boundary at x = 0. Space coordinates are measured in
laser wavelengths, and time in cycles.

In Fig. 1(a) the electromagnetic energy density is
shown at t = 11 for x < —1. We see that the reflected
radiation has been split into separate pulses, each moving
in its own direction. The most intense pulse is located
toward the upper left-hand corner of the box, the second
most intense pulse is closer to the middle of the box, and
the third and least intense pulse of the three is located
toward the lower left-hand corner.

We plot the reflected radiation at the half-intensity
level [Fig. 1(b)] and find that only a subperiod pulse has
been reflected in the upward direction. We trace this pulse
and find that it has a divergence of ~20°. The maximum
intensity values of this pulse follow a ~40° direction with
respect to normal incidence.

The evolution of the electron density [Fig. 1(c)] shows
the motion of the reflecting surface driven by the laser
pulse. Electron layers, pushed by the pulse, deflect each
half-cycle into a new direction depending on the phase
and amplitude of the particular half-cycle. In addition,
the reflecting layer focuses these pulses in the backward
direction with varying focal lengths. Thus, each cycle has
its own divergence and its own virtual source point within
the ~ A3 volume. Because of the very tight focus and short
duration of the incident pulse this discrimination in the
direction and curvature between separate cycles is pos-
sible. Figure 1(c) for + = 1 shows the surface, from which
the pulse 1 has been reflected. The curvature, that reflects
this pulse in the upward direction (pointed by an arrow),
has the minimum focal length.

Our simulations show that the laser-plasma interaction
is phase sensitive due to the short incident pulse duration.
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FIG. 1. Simulation parameters: a = 3, 7 = 5 fs, ny = 1.5n,. (a) The electromagnetic energy density of the reflected radiation

(E% + B?). Numbers 1, 2, 3 indicate the most intense pulses in the reflected radiation: 1 — with the highest intensity, 3 — with the
lowest intensity of these three. (b) Half-intensity level of the reflected radiation. The horizontal arrow indicates a single attosecond
pulse. The plasma layer is shown schematically. (c) Snapshots of the electron density. The arrow indicates the curvature from which
the pulse 1 was reflected. (d) The time evolution of E> + B? at the point x = —3.5, y = 3. The arrows indicate the half-intensity
level of an isolated pulse that contains 10% of the incident pulse energy.
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Changing the phase of the pulse by 7, we obtain a
symmetrically mapped distribution for the reflected
light, the most intense subperiod going to the lower
left-hand corner.

We plot the time dependence of the electromagnetic
energy density at the point x = —3.5, y = 3 in Fig. 1(d)
(along the maximal intensity path of the pulse 1). We find
that the duration of this pulse is only 200 attoseconds, yet
it contains 10% of the incident pulse energy. The pulse has
been compressed under the motion of the reflective layer
of electrons in the direction parallel to k.

The process of attosecond pulse formation also scales
to higher energies. With an intensity increase of 2 orders
of magnitude and plasma density increase of one order,
substantially the same effect occurs and even shorter
attosecond pulses are efficiently formed.

We performed 3D simulations in addition to 2D runs.
The 3D results agreed with those in 2D geometry, with
some natural differences due to the anisotropy caused by
the polarization effects [16]. On the other hand, in 3D
simulations it is presently hard to achieve higher spatial
resolution, so the 2D result is more reliable.

An analytic model, presented for the sake of better
clarity, involves only one nonlinear input to the compo-
nent of the electron velocity, which is parallel to the
plasma gradient, from the p-polarized electric field com-
ponent of an incident plane wave. For short driving pulses
the total electron displacement can be negative, from
plasma towards the laser, resulting in an extremely sharp
reflected pulse.

Let us consider the reflection of a short relativistically
strong obliquely incident p-polarized plane electromag-
netic pulse arriving at a foil. The angle of incidence, 6, is
defined with respect to the x direction, the x axis being
normal to the foil, the wave comes from the x < O half
of space. The foil has thickness / << A and its density
profile can be described by the Dirac delta function n, =
Ny8(x). While calculating the charge motion we assume
the fields created by the currents and charges in the foil
to be small as compared to the fields in the incident
wave. This is allowed by the following condition: €; =
2me’Ny/m, A < 1 (see [12]). It is known that the problem
for nonzero angle of incidence 6, can be reduced to the
problem for 6, = 0 [17] by using the reference frame K’
which moves with the velocity as V, = csinf,, with
respect to the original frame of reference K. In the K’
frame the incident electric field has only one component
E,, the only component of the vector potential being A,.
Below our considerations are in the K’ frame.

While in the original frame of reference K, the plasma
was at rest in the absence of the incident wave, all the
particles move with the velocity —V, in the K’ frame. The
Lorentz force which drives the electron in the x direction
(normal to the foil), involves the term —V B, B, being
the wave magnetic field. The Lorentz force, and, conse-
quently, the electron velocity, v,, can be negative (di-
rected outwards), so, the radiation field produced by the
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electron at that time has a shorter time scale due to the
Doppler effect. In evaluating this effect, the conserved
integrals of motion are Ky = Dy — eAy/c = —m,ctanf,
and £ = (m2c* + p2c® + pic®)'? — p.c = m,c?/ cosb.
These relations should be used while estimating the elec-
tron current /, .. The ion current in the frame of reference
K'isI,; = ——eNOVy.

In neglecting the radiation back reaction as well as the
electron-ion interaction (€; < 1), the electron motion in
the field of an arbitrary plane electromagnetic wave is
given by well-known formulas, which describe this mo-
tion in a parametric form in terms of &, the parameter
27r&/ A being the phase of the wave (the incident wave in
the present context) [18]:

x(6) = ] cpEldE o = E+ a8, (D)

p(&)/m,c = a(a/2 — 1)sinf, tanb,, (2)
v.(&)/c=1-—(1+ ala/2 — 1)sin®6,) "}, 3)

where a = a(£)/ tanfy, a(€) = eA,(£)/m,c*. The longi-
tudinal velocity v, achieves the minimal value at @ = 1,
if ay = max|a| > tané,.

We introduce here the time ¢ related to the electron
motion to distinguish it from time ¢, which is used below
to define the dimensional quantity associated with the
phase of the reflected wave &, = ct + x. The typical
relation for the argument of the retarded potential is ct +
x = ct' + x,('), which allows us to relate the instant ¢, at
which the retarded potential is determined at the point x
[see below Eq. (4), note that x < 0 and that the reflected
wave direction of propagation is opposite to the x-axis
direction], to the instant ¢/, when this reflected wave was
actually emitted by the electron layer.

We find the vector potential in the reflected wave, by
integrating the current:

A ' +oo
o= fo dr f_m dnll,.8(n — x,(7)0(§, — cT — 1)
+1,,;6(n)0(&, — c7)]
= f ’ drl, (1) + 1,;¢,, 4)
0

where #/(£,) is the solution of the equation as follows:
ct! = &, — x,(t'), and 6(x) is the step function.

We use then, the relations: 0&/0t = c — v, (¢),
A&, Jot = c+ v (), 9€,/0E=1+2cp, ', and fi-
nally find the electric field E, ,(£,) = —0A,, /&, of the
reflected wave in parametric form as follows (both E| ,
and ¢, are expressed in terms of £):

_ 2@Npe(cky, + eAy(8))E | 2mNye
YT mict + (ck, + eA(€)) c >

&)

£ = [lnet + e, + e (@) ©
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FIG. 2. The incident electric field E(£) (dash-dotted line),
electron velocity v,(¢) (dotted line), and the reflected electric
field E,(£,) (solid line) for the parameters: aq = 2.5, 6, = /3,
€9 = 0.5 in the analytical model for the cases of pulse (a) com-
pression and (b) decompression. The arrow shows the phase
change for the reflected pulse: —2Ax/A, where Ax=x,(£=1).

The illustration of this analytical model for the ini-
tial pulse profile E(£) = —agexp(— 2(£/A — 0.5)%) X
sin(27r€/A), with parameters a, = 2.5, 6, = 7/3, and
€9 = 0.5 is shown in Fig. 2(a). We limit the incident
electric field to one cycle, having in mind that the suc-
cessive cycles create the reflection surfaces at different
angles. Electron velocity v, is negative, indicating that
electrons move toward the pulse. Thus, the reflected pulse
becomes much shorter due to the phase compression. On
changing the sign of E(¢) in Fig. 2 the reflected pulse
becomes longer due to the phase decompression.

Note that, just as in the numerical result, for short
pulses, compression effects crucially depend on the
relationship between the pulse phase and the incidence
angle. On changing the sign of the electric field in the
pulse at a fixed incidence angle, compression changes to
decompression.

The suggested attosecond pulse generation scheme
using supercritical plasma is several orders of magni-
tude more efficient than those involving recollisions in
gas targets. This is because the ensemble effect of criti-
cal surface reflection, being coherent in nature, is near
unity, while the cross section for recollision in gases is
quite small.

With PIC simulation and analytical modeling we have
shown that reflections in the relativistic A> regime are
accompanied by deflection and compression leading to
the generation of isolated attosecond pulses with ~10%
efficiency. This technique can be scaled from the milli-
joule to the joule level.

We are thankful to S. V. Bulanov for useful discussions.
The work was supported by the NSF Grant No. 0114336.
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