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On the ‘‘Causality Argument’’ in Bouncing Cosmologies
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We exhibit a situation in which cosmological perturbations of astrophysical relevance propagating
through a bounce are affected in a scale-dependent way. Involving only the evolution of a scalar field in
a closed universe described by general relativity, the model is consistent with causality. Such a specific
counterexample leads to the conclusion that imposing causality is not sufficient to determine the
spectrum of perturbations after a bounce provided it is known before. We discuss consequences of this
result for string motivated scenarios.
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The simplest way to study a nonsingular bounce is
to consider general relativistic Friedmann-Lemaı̂tre- where’ is the scalar field driving the bounce, behaving as
It was recently acknowledged that perhaps the most
fundamental key questions of string [1] or M theory could
be addressed in the framework of time-dependent cosmo-
logical background [2]. Conversely, it was found that this
new physics may imply new solutions for the dynamics of
the early Universe. It is the case, in particular, of the pre-
big bang paradigm [3], or the more controversial [4]
ekpyrotic scenario [5]. In both of these last two models,
the effective four-dimensional theory presents a transi-
tion between a contracting and an expanding phase, i.e., a
bounce [6,7].

In general, both the contracting and expanding phases
can be described by well controlled low-energy physics
for which high energy corrections (the �0 terms [1] in
string theory, for instance) are negligible. As a conse-
quence, before (and after) the bounce takes place, it is
possible to calculate unambiguously the spectrum of
gravitational perturbations. On the contrary, the bounce
itself demands full knowledge of such corrections which
are, in practice, either difficult to implement [8] or simply
unknown. This is why propagating perturbations through
the bounce represents a technical challenge but is of
uttermost importance, in order to make contact with
observational cosmology.

The impossibility to know precisely the dynamics of
the bouncing phase has led to postulate that its effect
would reduce at most to a scale-independent modification
of the overall amplitude [3,9]. As a matter of fact, both
during the radiation to matter [10] transition and through
the preheating [11], which are two other examples of short
duration cosmological transitions, the spectrum is propa-
gated in a scale-independent way. The purpose of this
Letter is to reexamine this assumption in the context
of bouncing universes. We show, by means of a specific
counterexample, that such a cosmological transition can
affect large wavelengths in a scale-dependent way and
this without violating causality. Thus, this last argument
cannot be invoked to justify the above-mentioned
postulate.
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Robertson-Walker (FLRW) models with closed spatial
sections and a scalar field [7]. We choose � � 0 to be
the conformal time at which the bounce occurs. Then,
without loss of generality, the FLRW scale factor in the
vicinity of the bounce (i.e., for � � 1) can be described
by a power series expansion in � with one free parameter
for each term of the series. We choose those such that the
scale factor can be approximated by
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The first free parameter a0 represents the value of the
scale factor at the bounce. The second free parameter,
namely �0, gives the typical time scale of the bounce (the
physical duration of the bounce is t0 � a0�0) and deter-
mines the corresponding de Sitter–like tangent model
[12], the deviation from which is measured by the third
and fourth free parameters � and �, hence, the nonintui-
tive coefficients in Eq. (1); they are, in some sense,
similar to the slow-roll parameters of inflationary cos-
mology although they are not restricted to small values. It
has been shown in Ref. [12] that one should restrict
attention to 11=5 � � & 	0:1. If � � 0, the bounce is
symmetric. For j�=�0j � 1, the above model is assumed
to be connected to other cosmological epochs. Note also
that adding more terms in the series (1) does not change
the following argument [12].

The free parameter �0 is directly connected to the null
energy condition (NEC) 	� p � 0, where 	 and p are,
respectively, the energy density and the pressure. Indeed,
at the bounce, Einstein equations imply that
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where the parameter 
 is defined by the following ex-
pression:
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’ � ’0 � ’0
0�� � � � (a prime denotes a derivative with

respect to conformal time) around the bounce, and mPl is
the Planck mass. Combining both equations, we see that
the NEC is satisfied at the bounce provided j�0j � 1, the
limiting case �0 � 1 corresponding to the vacuum equa-
tion of state 	 � 	p. The previous considerations dem-
onstrate that the bounce cannot be made arbitrarily short
if one wants to preserve the NEC. Under this last con-
dition, the short bounce limit is not �0 ! 0 but rather
�0 ! 1; i.e., 
 ! 0. Note that since 
 is related to the
kinetic energy density of the scalar field to the Planck
density, one expects 
 � 1.

Let us now turn to the study of the cosmological
perturbations around the previous model (see Ref. [10]).
The gravitational fluctuations are characterized by the
curvature perturbations on zero shear hypersurfaces, i.e.,
the Bardeen potential �, whose master equation of mo-
tion reduces to that of a parametric oscillator given by

u00 � �n�n� 2� 	 Vu����u � 0; (4)

where the factor n�n� 2� arises from the eigenvalue of
the Laplace-Beltrami operator on the closed spatial sec-
tions (hence, n is an integer). In the above equation,
we have introduced a new gauge-invariant quantity,
u, related to � by (see Ref. [12] for details) � �������
3�

p
Hu=�2a2��, where � � 8�=m2

Pl and H � a0=a.
The quantity � is defined by �	2 � a2�1� p=	� �
�1�H	2�. This quantity depends only on the scale
factor and its derivatives (up to the fourth order).

It is well known that only those modes having n > 1
are not gauge modes. A crucial point is that the values of n
of astrophysical interest today are such that n � 1 (e.g.,
for �now � 1:01, 60< n< 6� 106). They are related to
the more usual wave number k2, commonly used in infla-
tionary cosmology, by the relation k2 � n�n� 2���	 1�
which shows that, in this last context, k2 � 1 (since
� ’ 1 at the end of inflation with a very high accu-
racy). The effective potential Vu��� in Eq. (4) can be
expressed as

Vu��� �
�00

�
� 3�1	 c2S�; (5)

where c2S � p0=	0, which, in some regimes, can be inter-
preted as the sound velocity. Contrary to the flat case, the
effective potential cannot be cast into the form of the
second derivative of a function over that function.

The fact that the effective potential depends only on the
scale factor and its derivatives means that it can be
calculated for a general bounce given by Eq. (1).
Far from the bounce, but still with �< �0, we have
Vu��� ’ 4. In the vicinity of the bounce and in the limit
of a short bounce satisfying the NEC, one has
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Let us notice that Vu�� � 0� is an extremum of the
potential only in the case � � 0. We see that the height
of the effective potential diverges in the limit 
 ! 0.
Therefore, in this limit, the bounce will necessarily affect
the propagation of all the Fourier modes, regardless of the
values of the parameters a0, �, or �. In other words, the
spectrum of the fluctuations cannot a priori propagate
through the bounce without being changed in the NEC-
preserved short time limit. This conclusion is generic and
does not depend on the details of the model.

Is this compatible with causality? Let us first recall that
causality relies on the concept of horizon which, requir-
ing an integration over time dH�t� � a�t�

R
t
ti
a	1��� d�, ti

being the initial time (which should be ti � 	1 in the
case of nonsingular cosmology), is a global quantity.
Assuming from the outset a homogeneous background
is problematic whenever the implied horizon is finite
since in this case there exist scales larger than dH; some-
how, imposing any condition on these scales is acausal. In
other words, dH fixes the scale limit below which the
theory is physically meaningful. Technically, this means
that, whenever a homogeneous background is assumed,
one should proceed as follows: Solve mathematically the
perturbation equations for all modes �, and then imple-
ment causality by restricting attention to those satisfying
� � dH. To be able to decide whether this condition is
met, one needs to embed the local bounce transition into a
complete global model providing dH. In conclusion, with-
out knowledge of the function a�t� for all t, there can be
no fundamental principle which would preclude large
scales to be spectrally affected by a local effective po-
tential (4). (Note that bounces are usually implemented in
order to regularize the singularity, leading to a geodesi-
cally complete universe, and, hence, an infinite horizon.)

Another possible source of confusion is the often made
identification of the Hubble scale ‘H � a2=a0, a local
quantity, with the horizon dH. Once a given scale � is
inside the horizon at some time t � t0, it remains so for
any time t > t0, because the ratio of the horizon to the
physical scale at time t is
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; (7)

where k is the comoving wave number of the scale under
consideration. The first term is by assumption greater than
unity and the second one is positive definite; hence, the
statement. By the same token, any scale which is outside
the horizon will eventually enter it later (unless a singu-
larity develops before). In contrast, as is well known in
the inflationary situation, a given scale can either exit or
enter the Hubble radius, which can be done because � �
‘H is physical, contrary to � � dH. In the case of a
bouncing universe, the Hubble radius diverging at the
bounce, all scales are, at some stage, sub-Hubble. For flat
spatial sections, a super-Hubble scale also means that the
061301-2
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mode is below the effective potential of the perturbation.
This is no longer the case in the curved bouncing model
for which the mode can be sub-Hubble although potential
dominated, as was discussed in Ref. [12].

We now calculate explicitly the effect of a symmetric
bounce (� � 0) on the evolution of the cosmological
perturbations. In this case, it turns out [12] that the ef-
fective potential can be expressed as the ratio of two
polynomials of order 24; it is represented in Fig. 1.
Obviously, for such a complicated potential, the equation
of motion (4) cannot be solved analytically. However, in
the case we are interested in, namely 
 � 1, the poten-
tial has a simple behavior, which can be studied simply by
retaining only the smallest order terms in 
.

In the limit where 
 goes to zero, the extremum of the
potential V0 diverges while its width, characterized by
�z, shrinks to zero, namely,
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This observation is confirmed by a study of the wings in
Fig. 1 whose height and position are found to be
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and exhibit therefore a similar behavior in the NEC-
preserved short time limit. The previous properties sug-
gest that we deal with a distributional effective potential
and, indeed, a more careful analysis reveals that [12]
FIG. 1 (color online). The effective potential Vu��� for the
perturbation variable u��� as obtained by using the quartic
expansion of the scale factor. The values �0 � 1:01, � � 0, and
� � 	2=5 have been used to derive this plot. The almost
undistinguishable dot-dashed curve represents a rational ap-
proximation to this potential which is valid in the vicinity of
the bounce and that is used in Ref. [12]. Clearly, the potential is
well behaved at all relevant times, and so is the corresponding
variable u.
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Vu��� � 	C
�
���; (10)

where the constant C
 is given by C
 �
�	5�2�=�8
��1=2 and where the function �
��� is a rep-
resentation of the Dirac � function, i.e., lim
!0�
��� �
����. Note that even though the potential appears singu-
lar, this is nothing but a computational trick allowing an
easy derivation of the resulting spectrum (recall that in
realistic situations the parameter 
 must remain small
but nonvanishing [12]). The equation of motion (4) of the
quantity u can now be written as

u00 � �n�n� 2� � C
�����u � 0; (11)

which is nothing but a Schrödinger-like equation for a
distributional potential. Right before (superscript <) and
after (superscript > ) the point � � 0, but still within the
bounce epoch, a Fourier mode does not interact with the
barrier since the potential vanishes and the solutions are
just linear combinations of plane waves e	i

�����������
n�n�2�

p
� and

ei
�����������
n�n�2�

p
� with coefficients A>, B> and A<, B< before

and after the bounce, respectively.
In order to calculate the spectrum after the bounce,

being given some initial conditions before the bounce, one
must apply junction conditions. In the case at hand, the
matching conditions are �u� � u�0�� 	 u�0	� � 0 and
�u0� � 	C
u�0�, the last one coming from an integration
of the equation of motion in a thin shell around � � 0.
This reduces to

A> � B> � A< � B<; (12)

A> 	 B> � A< 	 B< 	
iC
�A< � B<�������������������

n�n� 2�
p : (13)

In the limit 
 ! 0, the constant C
 diverges and there-
fore the second term in Eq. (13) is dominant. Straight-
forward algebraic manipulation allows us to determine
the transfer matrix defined by [9]�

A>

B>

�
� Tu

�
A<

B<

�
; (14)

and we obtain the following expression:

Tu � 	i

�����������������������
	5�2�
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1 1
	1 	1

�
1


1=2
: (15)

Some comments are in order at that point. First, one
sees that, as discussed above, the transfer matrix depends
on the wave number. Our calculation permits one to
actually predict accurately what the dependence is:
/�n�n� 2��	1=2. Moreover, the calculation also predicts
the dependence of the transfer matrix on the parame-
ter � (except in the limit � ! 0 for which a different
calculation must be done [12]). A point worth mention-
ing is that the overall amplitude diverges as 
 ! 0.
Since u is just a mathematically convenient variable,
this is not necessarily problematic. Indeed, using the
061301-3
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relation between u and the Bardeen potential �, and the
fact that, at the bounce, Eq. (2) holds, one can show that
the spectrum of the Bardeen potential is perfectly finite
after the bounce, even in the limit 
 ! 0. Note also that
the fact that relevant scales may be larger than the dura-
tion of the bounce itself does not preclude them to be
affected by the transition. Finally, it is worth mentioning
that the above result has been recovered in Ref. [12] using
a different method, including the numerical factor in the
overall amplitude.

In more standard situations, even though the amplitude
of � might change, the curvature perturbation on uni-
form density hypersurfaces, i.e., the quantity called !BST
[13], does not. Indeed, it satisfies [14]
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; (16)

which was been shown [13] to hold independently of
the gravitational field equations. Equation (16) implies
that !BST is conserved under the conditions that there
is no entropy perturbation (�pnad � 0), the decaying
mode of � is neglected, and the scales are super-Hubble
(k� H ). Since H � 0 at the bounce, the Hubble radius
is larger than any relevant scale during a finite interval
around the bounce; i.e., cosmological scales are not large
in the super-Hubble sense. Through the bounce, moreover,
the notion of decaying and growing modes is irrelevant.
Two conditions out of three being violated, !BST has no
reason to be conserved and, hence, is not convenient for
describing a bouncing transition. One should note addi-
tionally that, since the spectrum of � is altered, there is
no reason why !BST should not be also spectrally distorted
through a bounce.

In this Letter, we have demonstrated that there is no
reason to believe that the spectrum of large scale cosmo-
logical fluctuations is not affected by a short duration
bounce, although this is not necessarily the case (one
could choose, for instance, �0 � 1, however hard this
is to reconcile with the field theoretical treatment [12] or
have a ‘‘slow-roll’’ kind of bounce with �0 � 1 [7]). We
have shown that this occurs when one approaches the
NEC violation and we have also demonstrated that this
effect does not violate causality. This result may find
important applications: Although the calculation dis-
cussed here is based on general relativity, there is no
reason why causality should act differently in the frame-
work of, say, string theory. In string motivated cosmo-
logical scenarios (as, for instance, in the pre-big bang
paradigm [3] or in the ekpyrotic case [5]), the calculation
of the power spectrum of cosmological fluctuations is
done in the contracting phase and the predictions relevant
for observational purposes then stem from the assumption
that, for sufficiently large scales, perturbations are essen-
tially not affected by the bounce. Our result indicates that
061301-4
this assumption is far from trivial and may challenge the
conclusions reached thus far in the literature.
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