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For physical systems described by smooth, finite-range, and confining microscopic interaction
potentials V with continuously varying coordinates, we announce and outline the proof of a theorem
that establishes that, unless the equipotential hypersurfaces of configuration space �v �
f�q1; . . . ; qN� 2 RNjV�q1; . . . ; qN� � vg, v 2 R, change topology at some vc in a given interval
�v0; v1	 of values v of V, the Helmoltz free energy must be at least twice differentiable in the
corresponding interval of inverse temperature ���v0�; ��v1�� also in the N ! 1 limit. Thus, the
occurrence of a phase transition at some �c � ��vc� is necessarily the consequence of the loss of
diffeomorphicity among the f�vgv<vc and the f�vgv>vc , which is the consequence of the existence of
critical points of V on �v�vc , that is, points where rV � 0.
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occurring in configuration space: a topology change [5] borhood of a critical point, Eq. (2) yields @2 V � ��ij
Phase transitions (PTs) are phenomena which bring
about qualitative physical changes at the macroscopic
level in the presence of the same microscopic forces act-
ing among the constituents of a system. Their mathemati-
cal description requires one to translate into quantitative
terms the mentioned qualitative changes. The standard
way of doing this is to consider how the values of ther-
modynamic observables, obtained in laboratory experi-
ments, vary with temperature, volume, or an external
field, and then to associate the experimentally observed
discontinuities at a PT to the appearance of some kind
of singularity entailing a loss of analyticity. Despite
the smoothness of the statistical measures, after the
Yang-Lee theorem [1], we know that in the N ! 1 limit
nonanalytic behaviors of thermodynamic functions are
possible whenever the analyticity radius in the complex
fugacity plane shrinks to zero, because this entails the
loss of uniform convergence in N (number of degrees of
freedom) of any sequence of real-valued thermodynamic
functions, and all this depends on the distribution of the
zeros of the grand canonical partition function. Also, the
other developments of the rigorous theory of PTs, such as
that due to Dobrushin, Lanford, and Ruelle on Gibbs
measures [2,3], identify PTs with the loss of analyticity.

However, we can wonder whether this is the ultimate
level of mathematical understanding of PT phenomena,
or if some reduction to a more basic level is possible.
The present Letter addresses just this point and aims at
providing a nontechnical presentation of a new rigor-
ous result, reported in Ref. [4], making its conceptual
meaning and prospective physical interest accessible
without going through the details of a lengthy mathe-
matical proof. The new theorem says that nonanalyticity
is the ‘‘shadow’’ of a more fundamental phenomenon
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within the family of equipotential hypersurfaces �v �
f�q1; . . . ; qN� 2 RNjV�q1; . . . ; qN� � vg, where V and qi
are the microscopic interaction potential and coordinates,
respectively. This topological approach to PTs stems from
the numerical study of the Hamiltonian dynamical
counterpart of phase transitions, and precisely from the
observation of discontinuous or cuspy patterns displayed
by the largest Lyapunov exponent at the transition energy
[6] (or temperature). Lyapunov exponents measure the
strength of dynamical chaos and cannot be measured in
laboratory experiments, at variance with thermodynamic
observables, thus being genuine dynamical observables
they are measurable only in numerical simulations of the
microscopic dynamics. To get a hold of the reason why the
largest Lyapunov exponent �1 should probe configuration
space topology, let us first remember that, for standard
Hamiltonian systems, described by H �
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V�q1; . . . ; qN�, �1 is computed by solving the tangent
dynamics equation:
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�j � 0; (1)

where q�t� � �q1�t�; . . . ; qN�t�	, and then �1 �

limt!11=2t lnf�
N
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_��2i �0�  �2i �0�	g.
If there are critical points of V in configuration space,
that is points qc � �q1; . . . ; qN	 such that rV�q�jq�qc � 0,
according to the Morse lemma [7], in the neighborhood of
any critical point qc there always exists a coordinate
system ~qq�t� � �~qq1�t�; . . . ; ~qqN�t�	 for which

V�~qq� � V�qc� � ~qq21 � � � � � ~qq2k  ~qq2k1  � � �  ~qq2N; (2)

where k is the index of the critical point, i.e., the number
of negative eigenvalues of the Hessian of V. In the neigh-
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which, substituted into Eq. (1), gives k unstable directions
which contribute [8] to the exponential growth of the
norm of the tangent vector �. This means that the strength
of dynamical chaos, measured by the largest Lyapunov
exponent �1, is affected by the existence of critical points
of V. In particular, let us consider the possibility of a
sudden variation, with the potential energy v, of the
number of critical points (or of their indexes) in configu-
ration space at some value vc; it is then reasonable to
expect that the pattern of �1�v�— as well as that of �1�E�
since v � v�E� — will be consequently affected, thus
displaying jumps or cusps or other ‘‘singular’’ patterns
at vc [this heuristic argument has been given evidence in
the case of the XY-mean-field model (see [6,9])]. On the
other hand, Morse theory [7] teaches us that the existence
of critical points of V is associated with topology changes
of the hypersurfaces f�vgv2R, provided that V is a good
Morse function (that is, bounded below, with no vanishing
eigenvalues of its Hessian matrix). Thus, the existence of
critical points of the potential V makes possible a con-
ceptual link between dynamics and configuration space
topology, which, on the basis of both direct and indirect
evidence for a few particular models, has been formu-
lated [6] as a topological hypothesis about the relevance
of topology for PTs phenomena. In what follows, we show
that, for a large class of physically meaningful potentials,
this conjectural status of the art turns into a qualitatively
new one because we can prove the following.

Theorem.—Let V�q1; . . . ; qN�:RN ! R be a smooth,
bounded from below, finite-range, and confining potential
[10]. Denote by �v :� V�1�v�, v 2 R, its level sets, or
equipotential hypersurfaces, in configuration space.
Then let vv � v=N be the potential energy per degree of
freedom.

If there exists N0, and if for any pair of values vv and
vv0 belonging to a given interval I vv � � vv0; vv1	 and for any
N > N0

�N vv is diffeomorphic to �N vv0 ;

then the sequence of the Helmoltz free energies
fFN���gN2N — where � � 1=T (T is the temperature)
and � 2 I� � ��� vv0�; �� vv1�� — is uniformly convergent
at least in C2�I�� (the space of twice differentiable func-
tions in the interval I�), so that limN!1FN 2 C2�I�� and
neither first nor second order phase transitions can occur
in the (inverse) temperature interval ��� vv0�; �� vv1��.

Where the inverse temperature is defined as �� vv� �
@S���

N � vv�=@ vv and S���
N � vv� � N�1 log

R
V�q�� vvN d

Nq is one of
the possible definitions of the microcanonical configura-
tional entropy. The intensive variable vv has been intro-
duced to ease the comparison between quantities
computed at different N values.

This theorem means that a topology change of the
f�vNgv2R at some vc is a necessary condition for a phase
transition to take place at the corresponding energy or
temperature value. The topology changes implied here are
060601-2
those described within the framework of Morse theory
through attachment of handles [7,11].

Remark 1.—The topological condition of diffeo-
morphicity among all the hypersurfaces �N vv with vv 2
� vv0; vv1	 has an analytical consequence: the absence of
critical points of V in the interval � vv0; vv1	. This is
proved in Lemma 1 of Ref. [4] by adapting to the �v
Bott’s ‘‘critical neck theorem’’ [11] which applies to the
manifolds Mv � f�q1; . . . ; qN� 2 RNjV�q1; . . . ; qN� � vg.
Apart from this initial link with topology, the proof
proceeds in the domain of Analysis.

Remark 2.—In the proof, we resort to the concept
of uniform convergence —from elementary functional
analysis — of a sequence of functions, and to the fact
that the limit of a sequence of smooth functions can be
nonsmooth. This way of tackling the thermody-
namic limit is in the spirit of the celebrated Yang-Lee
theorem [1].

Let us now outline the proof by focusing on the main
ideas (details can be found in [4]).

Under the crucial hypothesis of diffeomorphicity of the
hypersurfaces �N vv for vv 2 � vv0; vv1	, we want to prove that
the thermodynamic limit of the Helmoltz free energy,
F1��� � limN!1FN���, is at least twice differentiable,
so that first or second order phase transitions are absent.
For standard Hamiltonians, each function FN��� reads as
FN��� � ��2���1 log��=�� � fN���=�, sum of a part
coming from the kinetic energy term, and a configura-
tional part fN��� � �1=N� log

R
dNq exp���V�q�	. Thus,

in order to prove that F1��� 2 C2�I��, we have to show
that the sequence of smooth functions fFN���gN2N is
uniformly convergent at least in C2�I�� in the limit
N ! 1, or equivalently, since �2���1 log��=�� remains
always smooth in the limit N ! 1, we have to show that
the sequence of smooth functions ffN���gN2N is uni-
formly convergent in C2�I�� when N ! 1. Now, at any
N, fN��� is related to the microcanonical configurational
entropy S���

N through the Legendre transform: S���
N � vv� �

fN���  � vv. Hence, to prove that f1��� is twice differ-
entiable with respect to�, we need to prove that S���

1 � vv� is
3 times differentiable with respect to vv.

Eventually, we consider the equivalent definition, at
large N, of the configurational microcanonical entropy

SN�v� �
1

N
log��v;N� �

1

N
log

Z
�v

d 
krVk

; (3)

which also implicitly defines � as the surface integral
on the right-hand side (rhs), where d is the �N � 1�-
dimensional surface element of �v, and where krVk �
�
PN
i�1�@V=@qi�

2	1=2; since SN� vv� has the same thermo-
dynamic limit of the entropy S���

N � vv�, that is, S���
1 � vv� �

S1� vv�, we are left with the problem of proving that the
sequence of smooth functions fSN� vv�gN2N [where
SN�v� � SN� vvN�] is uniformly convergent in C3�I vv�, the
space of 3 times differentiable functions in the interval I vv,
in the limitN ! 1. The reason for using SN� vv� instead of
S���
N � vv� will be soon clear. After the Ascoli theorem [12],
060601-2
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in order to prove that S1� vv� is 3 times differentiable, we
need to prove that, for vv 2 I vv � � vv0; vv1	 and for any N,
the function SN� vv� and its first four derivatives are uni-
formly bounded in N from above; that is, for any N 2 N
and vv 2 � vv0; vv1	,

supjSN� vv�j<1; sup

�������@
kSN
@ vvk

�������<1; k� 1; . . . ;4: (4)

We prove the Theorem by proving that these bounds are
the consequence of the diffeomorphicity among the �N vv,
for vv 2 � vv0; vv1	.

From Eq. (3), the first four derivatives of SN� vv� are
trivially computed:

@SN
@ vv

� vv� �
1

N
�0�v;N�
��v;N�

dv
d vv

�
�0�v;N�
��v;N�

; (5)

and, using a compact notation, @2vvSN � N��00=��
��0=��2	, @3vvSN�N2��000=��3�00�0=�22��0=��3	,
and @4vvSN � N3��iv=�� 4�000�0=�2 � 3��00=��2 
12�00��0�2=�3 � 6��0=��4	, where the prime indices
stand for derivations of ��v;N� with respect to v �
vvN. In order to verify whether the conditions (4) are
fulfilled, we must be able to estimate the N dependence
of all the addenda in these expressions for the deriva-
tives of SN .

Being the assumption of diffeomorphicity of the �N vv
equivalent to the absence of critical points of the poten-
tial, we can use the derivation formula [13,14]

dk

dvk
��v;N� �

Z
�v

krVkAk
�

1

krVk

�
d 

krVk
; (6)

where Ak stands for k iterations of the operator

A��� � r

�
rV

krVk
�

�
1

krVk
:

The technical reason to work with SN instead of S���
N is

now evident: The derivatives of ��v;N� are transformed
into the surface integrals of explicitly computable combi-
nations and powers of a few basic ingredients, such as
krVk, @V=@qi, @2V=@qi@qj, @3V=@qi@qj@qk, and so on.
This is a technically crucial step to prove the Theorem.

The first uniform bound in Eq. (4), jSN� vv�j<1, is a
simple consequence of the intensivity of SN� vv�.

To prove the boundedness of the first derivative of SN ,
we first compute its expression by means of Eqs. (5) and
(6), which reads

@SN
@ vv

�
1

�

Z
�vvN

"
�V

krVk2
�2

P
i;j@

iV@2ijV@
jV

krVk4

#
d 

krVk
; (7)

with @iV � @V=@qi and i; j � 1; . . . ; N, whence (with an
obvious meaning of h�i�v

)�������@SN@ vv
��������

	
j �V j

krVk2



�v

2

*
j
P
i;j@

iV@2ijV@
jVj

krVk4

+
�v

: (8)

The N dependences of the derivatives of SN are estimated
at constant potential energy density vv, for any given vv 2
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� vv0; vv1	; thus, we can think of increasing N by glueing
together an increasing number k of replicas of a given
building block of N0 particles at potential energy v �
vvN0. Now the hypothesis of diffeomorphicity of the �v
plays again a crucial role, in fact in the absence of critical
points, for each building block we have minkrVN0

k2 �
CC2 > 0, with CC a constant and, as only short-range po-

tentials are considered, the larger N0 and N�� kN0� the
less relevant are the boundary interactions among the
building blocks. Thus, at large N, minkrVk2 � C2N,
where C � CC=N0 is a constant; for an upper bound esti-
mate of Eq. (8), we replace in its denominators the lower
bound C2N of minkrVk2:�������@SN@ vv

�������� hj �V ji�v

C2N
 2

hj
P
i;j@

iV@2ijV@
jVji�v

C4N2 ;

where now we have to estimate the N dependence of the
numerators. To this purpose, as we have assumed that V
is smooth and bounded below, we note that hj �V ji�v

�
hj
P
N
i�1 @

2
iiV ji�v

� Nmaxihj @2iiV ji�v
and, as we have

also assumed that V is a short-range potential, the number
of nonvanishing matrix elements @2ijV is N�d 1�, where
d is the number of neighboring particles in the inter-
action range of the potential, thus hj @iV@2ijV@

jV ji�v
�

N�d 1�maxi;jhj @
iV@2ijV@

jV ji�v
. Finally, putting m �

maxi;jhj @
iV@2ijV@

jV ji�v
,�������@SN@ vv

�������� maxihj @2iiV ji�v

C2  2
m�d 1�

C4N
; (9)

which, in the limit N ! 1, shows that the first derivative
of the entropy is uniformly bounded by a finite constant.
This first step proves that S1� vv� is continuous.

The three further steps, concerning boundedness of the
higher order derivatives, involve similar arguments to be
applied to a number of terms which is rapidly increasing
with the order of the derivative. Many of these terms can
be grouped in the form of the variance or higher moments
of certain quantities, thus allowing the use of a powerful
technical trick to compute their N dependence. For ex-
ample, using Eq. (6) in the expression for @2vvSN just below
Eq. (5), we get�������@

2SN
@ vv2

�������� Njh%2i�v
� h%i2�v

j  Njh �V� �  �%�i�v
j;

(10)

where % � krVkA�1=krVk� and  � r=krVk. Now, it
is possible to think of the scalar function % as if it were a
random variable, so that the first term in the rhs of Eq. (10)
would be its second moment. Such a possibility is related
with the general validity of the Monte Carlo method to
compute multiple integrals. In particular, since the �v are
smooth, closed (V is nonsingular), without critical points,
and representable as the union of suitable subsets of RN�1,
the standard Monte Carlo method [15] is applicable to the
computation of the averages h�i�v

which become sums of
standard integrals in RN�1. This means that a random
060601-3
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walk can be constructively defined on any �v, which
conveniently samples the desired measure on the surface.
Along such a random walk, usually called Monte Carlo
Markov chain (MCMC), % and its powers behave as ran-
dom variables whose ‘‘time’’ averages along the MCMC
converge to the surface averages h�i�v

. Notice that the
actual computation of these surface averages goes beyond
our aim, in fact, we do not need the numerical values —
but only the N dependences — of the upper bounds of the
derivatives of the entropy. Therefore, all we need is just
knowing that, in principle, a suitable MCMC exists on
each �v. Now, the function % is the integrand in square
brackets in Eq. (7), where the second term vanishes at
largeN, as is clear from Eq. (9). Therefore, at increasingly
large N, the approximate expression % �

PN
i�1 @

2
iiV=

krVk2 tends to become exact. % is in the form of a sum
function % � N�1

P
N
i�1 ai of terms ai � N@2iiV=krVk

2,
of O�1� in N, which, along a MCMC, behave as indepen-
dent random variables with probability densities ui�ai�
which we do not need to know explicitly. Then, after a
classical ergodic theorem for sum functions, due to
Khinchin [16], based on the central limit theorem of
probability theory, % is a Gaussian-distributed random
variable; as its variance decreases linearly with N,
limN!1Njh%

2i�v
� h%i2�v

j � const<1.
Arguments similar to those above used for

the first derivative of SN lead to the result
limN!1Njh �V� �  �%�i�v

j � const<1, which, together
with what has been just found for the variance of %,
proves the uniform boundedness also of the second de-
rivative of SN under the hypothesis of diffeomorphicity
of the �v.

Similarly, but with an increasingly tedious work, we
can treat the third and fourth derivatives of the entropy.
In fact, despite the large number of terms contained in
their expressions, they again belong only to two different
categories: those terms which can be grouped in the form
of higher moments of the function %, and whose N
dependence is known after the above-mentioned theorem
due to Khinchin, and those terms whose N dependence
can be found by means of the same kind of estimates
given above for @ vvSN . Eventually, after a lengthy but
rather mechanical work, also the third and fourth deriva-
tives of SN are shown to be uniformly bounded as pre-
scribed by Eq. (4) — whence the proof of the Theorem.

A few comments are in order.
The converse of our Theorem is not true. There is not a

one-to-one correspondence between phase transitions and
topology changes; in fact, there are smooth, confining,
and finite-range potentials, such as the one-dimensional
XY model [9], with even a very large number of critical
points, and thus many changes in the topology of the �v,
but with no phase transition. Therefore, an open problem
is that of sufficiency conditions, that is to determine which
kinds of topology changes can entail the appearance of a
PT. Preliminary hints on this point are given by the
060601-4
analytic study of particular models [9,17] for which
topology and thermodynamics are exactly computed.

Finally, though at present our Theorem applies only to
first and second order PTs and to those systems for which
V is a good Morse function, it provides the grounding to
an approach which can unify the mathematical descrip-
tion of very different kinds of PTs, such as those ‘‘exotic’’
ones occurring in glasses or in the folding of polymers
and proteins, for which the so-called energy landscape
paradigm [18] is currently studied overlooking the link
with Morse theory and topology.
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