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Extremal Dynamics and the Approach to the Critical State:
Experiments on a Three Dimensional Pile of Rice
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The evolution of the growth of a ricepile is studied in three dimensions. With time, the pile
approaches a critical state with a certain slope. Assuming extremal dynamics in the evolution of the
pile, the way the critical state is approached is dictated by the scaling properties of the critical state
itself. Experimentally, we determine the envelope of the maximal slope, which is a measure for the
distance from the critical state, as well as the growth of the average avalanche size with time. These
quantities obey power-law scaling, where the experimental exponents are in good agreement with those
obtained from an earlier determination of the critical state properties and extremal dynamics.
Furthermore, we discuss the influence of the transient state on the avalanche size distribution, which
may have applications in the prevention of large avalanches in natural systems.
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maximal slopes can be described analytically. It turns out measure of the gap, which is given by the maximal local
Self-organized criticality (SOC) was proposed more
than 15 years ago to explain the ubiquitous occurrence of
power-law behavior in nature [1]. However, much of the
progress in the understanding of SOC theory indicates
that power laws by themselves cannot be seen as a clear-
cut indication of SOC [2,3]. As a matter of fact, many
properties described by SOC theories cannot be studied in
natural systems. Thus, well controlled experiments on
model systems should be carried out in order to test the
many theoretical ideas that have been put forward. From
this point of view, it is surprising how few controlled
experiments have been carried out testing various aspects
of SOC. This may in part be due to the fact that early
experiments did not find power-law behavior in the ava-
lanches of simple, dry sandpiles, not to mention finite-
size scaling of the avalanche sizes [4]. Recently, however,
several systems have been shown to exhibit SOC in terms
of finite-size scaling as well as power-law avalanches,
such as a one dimensional pile of rice [5], a one dimen-
sional pile of steel balls [6], magnetic vortices in super-
conductors [7], wet sand as a model of the formation of
river beds [8], a conical pile of beads [9], as well as a three
dimensional pile of rice [10]. Thus the existence of a
critical point in slowly driven, nonequilibrium systems
is put on a much firmer base.

A genuine understanding of the nature of SOC can,
however, be gained only when the approach to the critical
state is understood. This entails the self-organization
process, by which the internal parameters are tuned,
such that criticality is reached. There have recently been
great advances from the part of theory elucidating this
behavior. In the context of extremal dynamics, Paczuski
et al. [11] have derived an equation, which they call the
gap equation, describing the approach of the system to the
critical state. Here the dynamics is such that extremal
sites, i.e., those with maximum slope, are the points
where activity takes place, such that the envelope of these
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that this gap approaches a critical value as a power law,
where the characteristic exponent can be obtained from
the avalanche exponents in the critical state [11].

Furthermore, there is a very intimate connection of
systems with extremal dynamics to the roughening of
an interface [12–14]. In fact, one model which has often
been used to describe the dynamics of a ricepile, the Oslo
model [15], has recently been mapped exactly onto the
simplest equation describing an elastic line in a random
medium, the Edwards-Wilkinson equation with quenched
noise [16]. In this line of reasoning is the view of
Dickman et al. [17], who describe SOC from the point
of view of absorbing state phase transitions, where the
slow driving of the system leads to an attractor at the
critical point. Many sandpile models can then be under-
stood from roughening physics, which describes the
movement of an elastic line in a random medium [18]
and is the most natural system exhibiting an absorbing
state phase transition. In this view, the reaching of the
critical state is understood from the fact that active sites
are removed only when their density is supercritical,
while they are added only when it is subcritical [17,19].
The stationary state which will be reached is thus natu-
rally at the critical point of the phase transition. This
again leads to a description along the lines of the gap
equation.

Some of the connections between roughening physics
and SOC, such as scaling relations between the roughness
exponents and the avalanche dimensions [11], have been
observed experimentally in a pile of rice [10]. This in-
dicates that the dynamics of such a pile is governed by
extremal dynamics, which makes it an ideal system with
which to study the transient behaviors and the approach to
the critical state. Here we present such a study, where the
evolution of a three dimensional pile of rice is observed
starting well away from the critical state and getting
progressively closer. In this way we can directly study a
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FIG. 1 (color online). Approach of the extremal slopes to the
critical state averaged over all experiments. The difference of
the maximum slope to the critical one approaches zero as a
power law, indicated by the straight line. The characteristic
exponent is given by � � 0:8�1	, where the error arises mostly
from the independent determination of the critical slope. This
value of � should be compared with � � 0:74�2	 obtained from
the properties of the critical state and Eq. (2). The inset shows a
linear plot of the increase of the maximum slope with time for
one of the experiments.
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slope of the pile and hence test various scaling relations
of the theory of extremal dynamics. Furthermore, we
study the evolution of avalanche sizes, as well as that of
the avalanche distributions, which can be used as further
tests of the concepts behind extremal dynamics.

The experiments were carried out on a ricepile of a
base area of �1� 1 m2. The pile is grown from a uni-
form line seed at one end of a half-open box, such that a
geometry akin to piles in rotating-drum experiments is
achieved. A detailed description of the setup can be found
elsewhere [10,20]. The surface coordinates of the pile are
measured by means of monocular stereoscopy, which
consists of a custom-built projector and a high resolution
(2048� 1596 pixels) charge-coupled device camera. A
set of alternating red, green, and blue lines is projected
onto the pile, while an image is taken at 45� to the
projection direction. The distortion of the lines then gives
the surface coordinates using simple geometry [20]. The
software we developed for identifying the lines leads to a
resolution and accuracy of the reconstructions of 1–2 mm,
which is comparable to the grain size (2� 2� 7 mm3).
The technique is discussed in detail elsewhere [20]. For an
experimental run, the ricepile is prepared in an initial
state, which is far away from the critical angle.We created
a flat initial surface at an inclination of �0 ’ 0:4 rad. The
pile is subsequently grown from a uniformly distributed
line at a rate of �50 grains=s. Pictures are taken every
30 s. This implies that between two images, one to two
grains are added at each point along the line of growth.
Thus slow driving and a separation of time scales are
ensured [21]. The data discussed here come from ten
different experiments, each consisting of 550 images,
covering the approach to the critical state of the system.

Because of the accurate reconstructions of the surface
coordinates, it is possible to characterize the local slopes
of the pile, as well as the size of the avalanches between
two consecutive images. The evolution of the slopes of
the pile is a natural measure for the approach to the
critical state. It is when the slope exceeds a critical
threshold, such that the force of gravity wins over static
friction, that activity starts. In the context of extremal
dynamics, the places of maximal slope will be the ones
activated, such that their evolution gives a measure for the
approach to the critical state. In terms of the gap equation
of Paczuski et al. [11], the envelope of the maximal slopes
thus takes the role of the gap, G, which eventually reaches
its critical value, fc. Experimentally, the gap is deter-
mined via the maximum slope observed until time t,
where the slopes are obtained from the average profile.
The gap equation then describes the change of G with
time in the transient state

dG
dt

�
t��1�dB=D	=�2��	�1
G

h�Vi
; (1)

where the average avalanche size, h�Vi, diverges as the
critical state is reached, h�Vi / �fc �G	�� / t, D is the
058702-2
avalanche dimension, � is the avalanche distribution ex-
ponent, and dB is the fractal dimension of the active sites
of an avalanche [11]. The asymptotic behavior of the
gap can thus be easily deduced from the gap equation as
�fc �G	 / t��, where � is given by

� � 1�
1� dB=D
2� �

: (2)

In Fig. 1, the experimentally determined gap is pre-
sented. At each time step, the local slopes of the pile
were determined and their maximal value compared
with the maximum of the previous gap values. If the
present maximal slope exceeded the gap, it was thus
increased. The main part of Fig. 1 shows a double-
logarithmic plot of the difference of the gap to the
critical angle, fc. The inset shows a linear plot of the
evolution of the gap for one of the experiments. As can be
seen, the critical slope is approached as a power law,
�fc �G	 / t��, over almost 2 orders of magnitude, which
is indicated by the straight line in the log-log plot. We
obtain an exponent of � � 0:8�1	, where the main part
of the error arises from the determination of the criti-
cal slope fc � 0:92�1	. Here the critical slope was de-
termined from a direct geometrical measurement of
the extent of a small sample of rice (�10�4m3), which
was slowly tilted until the critical angle was reached.
Another estimation can be obtained from the maximum
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G observed over all experiments, which can be used as a
lower bound and yields fc � 0:915.

As discussed above, the gap equation of extremal dy-
namics predicts such power-law behavior, as well as the
value of the exponent � from those of the avalanche
distribution exponent, �, the avalanche dimension, D,
and the fractal dimension of the active sites, dB, in the
critical state. Using the values for � � 1:21�2	, D �
1:99�2	, and dB � 1:58�3	 determined elsewhere [10],
when the system was in the critical state, one obtains a
value of � � 0:74�2	, in good agreement with that found
here from the evolution of the pile in the transient state.

The above derivation, however, rests on the way the
average size of an avalanche grows with time in the
transient regime. This can also be measured directly in
our experimental system. The volume of an avalanche
between two images can be obtained from the integral
of their height difference over the pile area:

�V �
1

2

Z
jh�x; y; t	 � h�x; y; t��t	jdxdy: (3)

The time evolution of the avalanche size obtained in such
a way is shown in Fig. 2 for one experiment.

From Fig. 2 it can be seen that there is a gradual
increase in the size of the avalanches with time.
However, the characteristic noise in a SOC process makes
the precise dependence of the avalanche size on time
difficult to discern. For this reason, in Fig. 3, we present
a running average, where the avalanche sizes are averaged
over a window of 100 time steps, which are subsequently
averaged over all experiments. In Fig. 3 it can be clearly
seen that the average size of the avalanches increases
linearly with time, as would be expected from the ex-
FIG. 2. The temporal evolution of the avalanche sizes in the
transient regime for one of the experiments. The average size of
the avalanches increases with time, as is expected from ex-
tremal dynamics. For a proper determination of the divergence
of the avalanche size as the critical state is reached, it is
necessary to study the average avalanche size over a short
time window. This can be seen in Fig. 3.
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tremal dynamics underlying the gap equation. A determi-
nation of the corresponding exponent �, such that
h�Vi / t�, yields � � 1:1�1	 in good agreement with
linearity. Thus also the main feature needed for the
derivation of the scaling law for the approach of the gap
to its critical value can be measured experimentally.

The linear increase of the average avalanche size also
has repercussions on the distribution of avalanches in the
transient regime. The time evolution of the avalanche
sizes as seen, for instance, in Fig. 2 has a different
probability distribution than would be the case for data
gathered in the critical state. As the average avalanche
size increases linearly with time, smaller avalanches
occur more often at early times. Thus at early times the
apparent avalanche distribution exponent will be higher
than in the critical state.

This is shown in Fig. 4, where the avalanche distribu-
tion exponent for avalanches in a time window of
200 steps is given as a function of time. As can be seen,
the apparent avalanche distribution exponent starts at a
high value and decreases with time. At long times, it
reaches a value of � � 1:17�5	, which is also the exponent
determined when the system is in the critical state [10].

In conclusion, we have studied the way by which a
three dimensional ricepile approaches its critical state.
As predicted from extremal dynamics [11], this approach
is described by a gap equation for the envelope of the
maximal slopes, which leads to an algebraic approach of
the maximal pile slope to its critical value. The experi-
mental value for the corresponding exponent is � �
0:8�1	, which, using the same theory, can also be pre-
dicted from the properties of the critical state to be � �
0:74�2	. These values are in good agreement, showing the
applicability of extremal dynamics to the three dimen-
sional ricepile.
FIG. 3. A running average of the temporal evolution of the
avalanche sizes in the transient regime. The averaging is
carried out over a window of 100 consecutive time steps,
increasing the starting time one step at the time. The average
avalanche size increases linearly with time as indicated by the
straight line. Assuming a power-law increase, the exponent
obtained is � � 1:1�1	.
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FIG. 4. The time dependence of the avalanche distribution
exponent. For each point, the avalanche distribution function is
determined in a time window of 200 time steps and then fit to a
power-law dependence. At early times, the exponent is higher
than in the critical state, whereas at late times (close to the
critical state) it is consistent with our previous determination.
This decrease comes from the increase of the average avalanche
size with time. The lines are guides to the eye.
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Furthermore, the average size of the avalanches in-
creases linearly with time as the critical state is ap-
proached. This has been measured directly, where an
exponent of � � 1:1�1	 is obtained. The same result can
be inferred from the changes in the avalanche size dis-
tribution as the critical state is reached. At early times, in
the transient, smaller avalanches are more likely. This
leads to an increase in the apparent avalanche distribution
exponent at early times. At long times the true avalanche
exponent of the critical state is recovered.

This result may also have some application in natural
systems, where the prevention of large avalanches is of
utmost importance. It has been found recently, for in-
stance, that the distribution of snow avalanches in parts of
the Rocky Mountains remains unaffected by whether
avalanches are triggered artificially or occur naturally
[22]. Similarly, many of the recent forest fires in the
United States were started as controlled burn-offs. As a
matter of fact, the effect of more prevention leading to the
occurrence of larger events even has a name in forest fire
prevention: the Yellowstone effect. A more quantitative
argument for this second point may lie in the fact that the
distributions of fires in the western United States are the
same [23], irrespective of whether one studies the period
from 1150–1960 or the period from 1986–1995 in lands
of the U.S. wildlife refuge. Presumably in the latter case,
some care was taken in preventing big fires. In the context
of SOC, this is not unexpected as the nature of the
disturbance that leads to an avalanche is not important
for the avalanche distribution [24]. However, as has been
shown above, if human avalanche initiation were to take
place in the transient period, before the critical state is
reached, the avalanche distribution would indeed be dif-
ferent. As is hoped for in avalanche prevention, smaller
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avalanches are more likely to occur in that case, as is
indicated by the larger avalanche distribution exponent.
Naturally, such a strategy for the prevention of large
events critically depends on whether it is possible to
influence the system on its way to the critical state. In
some systems, as in those of snow avalanches and wild
fires, this seems feasible as their development lies within
human time scales.
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