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Competition-Driven Network Dynamics: Emergence of a Scale-Free Leadership Structure
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Using the minority game as a model for competition dynamics, we investigate the effects of
interagent communications across a network on the global evolution of the game. Agent communication
across this network leads to the formation of an influence network, which is dynamically coupled to the
evolution of the game, and it is responsible for the information flow driving the agents’ actions. We show
that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining
a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by
information exchange on the network, agents can generate a high degree of cooperation making the
collective almost maximally efficient.
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a social network. The two main questions we address here representing acquaintanceship between pairs of agents.
In a competitive environment with seriously limited
resources, an individual is able to make the most gains if
he avoids the crowds and finds strategies that place him
into the distinguished class of the elites, or of the ‘‘few.’’
Even though this class forms a minority group when
compared to the whole agent society, it can largely influ-
ence the dynamics of the entire society for the simple
reason that the elites hold the best strategies in the given
situation, and thus they become key target nodes for
others to communicate with and follow. For our purposes,
an agent is a leader if at least one agent is following and,
thus, acting on his advice. The influence of a leader is
measured by the number of followers he has. Agents who
are not leaders are simply coined ‘‘followers.’’ However,
leaders can follow other leaders, thereby creating a leader-
ship structure. Certainly, the leadership structure, and
even which particular agents are leaders at all, is often
very dynamic (mostly because the success of a certain
strategy is determined by the context of the strategies
used by the other agents).

One of the most ubiquitous mechanisms guiding people
in deciding whom or what to follow is reinforcement
learning [1], which is a mechanism for statistical infer-
ence created through repeated interactions with the en-
vironment. For example, in iterated situations or games, it
can be argued that we all monitor our social circle and
‘‘score’’ our acquaintances, including ourselves, based on
past performance (success measure). We then take more
seriously, and often follow, those with a higher score
(success rate) [2].

In order to study the scenario described above, in this
Letter we use a well known multiagent model of compe-
tition, the minority game (MG) [3–5], which we modify
to include interagent communications or influences across
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are as follows: (1) What type of leadership structure is
generated? (2) Can the effects of interagent communica-
tions aggregate up to the level of the collective and affect
its behavior?

The original MG is an abstraction of a market played
by agents with bounded rationality, inspired by the El
Farol bar problem introduced by Arthur [6]. In this
iterated game, at every step, N agents must choose be-
tween two different options, symbolized by A and B, e.g.,
‘‘buy’’ and ‘‘sell.’’ Only agents in the minority group get a
reward. The agents have access to global information,
which is the identity of the minority group for the past
m rounds. Each agent bases his choice on a set of S
strategies available to them. A strategy, which is an
agent’s ‘‘way of thinking,’’ is a prediction [6] for outcome
A or B, in response to all possible histories of length m.
The strategies are distributed randomly among agents,
and thus, in general, each agent has a different set of S
strategies. Each agent makes his next choice in the game
using reinforcement learning: every agent keeps a score
for each of the S strategies which he then increments by
one each round if that strategy correctly predicted the
minority outcome (regardless of usage). The strategy used
to make the new choice is the one with the best score up to
that time. If two or more strategies share the best score,
then one of those strategies is picked randomly. Pre-
viously, the effects of local information in the MG were
studied both with the reinforcement learning type [7] and
the nonreinforcement learning type [8–10] of agent com-
munication mechanisms on Kauffman networks [11] and
with the nonreinforcement learning type of mechanisms
on linear chains [9,10].

In our model, a social network of agents is described by
a graph with vertices representing the agents, and edges
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FIG. 1 (color online). Leaders and followers. (a),(b) The aver-
age of the number of leaders with k followers normalized by
the average number of leaders with exactly one follower N1.
The symbols correspond to varying system sizes and link
probabilities, p � 0:1 and p � 0:2, respectively, while the
dashed and thin continuous lines correspond to the same
quantity for the random choice game on the ER substrate.
Next to the curves, the thick continuous line has a slope of
�1. (b) The same quantity for small memories, m � 2 and
m � 4, with S � 2 for p � 0:1 and p � 0:2. The curves
oscillate around the same 1=k law. For all curves in (a) and
(b) the averages were taken over 17 runs, which was sufficient,
because of the fast convergence of the quantities. (c) a�p� � N1

with good approximation is independent of the system size N.
(d) The number of followers as a function of the system size N.
For all cases S � 2.
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This network of acquaintances forms the substrate net-
work (G), or skeleton for interagent communications
[2,7–10,12]. An edge ab in G means that agents a and
b may exchange game-relevant information. However, it
does not indicate whether the exchanges influence the
action by any of the involved agents. That information
is modeled by a second network, the influence network
�F�, which is a directed subset of G, and in which an edge
ab, pointing from a to b, means that agent a acts on the
advice of agent b when deciding the minority choice.
In the competitive environment of the stock market,
Kullman, Kertész, and Kaski, by studying time-
dependent cross correlations have recently shown the
existence of such a directed network of influence among
companies (F) based on data taken from the New York
Stock Exchange [13]. We do not, in general, know the
precise topology of the social networks. However, it is
known that social networks have a small-world character
[14–16]. Here we take G to be an Erdős-Rényi (ER)
random graph with link probability p. An ER random
graph shows the small-world effect, since the diameter of
the graph increases only logarithmically with the number
of vertices [17], and the nodes also have a well defined
average degree, pN, which results from cognitive limita-
tion [16]. Studies using other types of network topologies,
which are more suited to describe social networks (one
drawback of ER is its low clustering coefficient [14]) will
be presented in future publications. Just as in the original
MG, in our model, in order to make his next decision,
each agent uses his best performing strategy to predict
what the next minority choice will be. However, he does
not necessarily act on that prediction. Instead, the pre-
diction simply constitutes the agent’s opinion, which he
then shares with all his first neighbors on the substrate
network G. This is done by all agents simultaneously, and
thus every agent obtains as information the predictions of
all his first neighbors. Each agent then uses this informa-
tion to make his final choice, via reinforcement learning,
and each keeps scores of the prediction performance of all
his first neighbors and himself and updates the scores
after every round by incrementing the scores of the agents
whose prediction was correct. Each agent then acts on the
prediction or opinion of the neighboring agent with the
highest score. Of course, if one has a higher score than
any of his neighbors, then he acts on his own prediction.

The game is initialized by fixing at random S strategies
for each agent, an arbitrary initial history string, and a
fixed instance of the substrate network G. After initial
transients (which we took to be 105 iterations), the game
evolution becomes insensitive to the particular initial
history string for the average quantities presented below.
However, it may remain sensitive to the disorder in the
strategy space of the NS strategies that are used, and to
the disorder associated with the particular social network
chosen. Thus, there are four relevant parameters in this
game: N, S, m, and p 2 �0; 1�. Of course, in reality the
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substrate network can also change (we make new friends
and others fade away). However, we assume its dynamics
to be much slower than that of F, and therefore it is
neglected here. As defined previously, an agent i is a
leader if it has at least one follower, j, and thus agent j
follows through action what agent i suggests. For this to
happen, i has to have the largest prediction score among
the acquaintances of j, which are defined as the kj edges j
has in G. In an ER graph, the number of kj links has a
Poisson distribution with an average value at � � pN, and
an exponential tail. An agent j follows only one agent’s
opinion to decide his action, and thus its number of out-
links is always one, k�out�j � 1. However, the number of
inlinks for agent j, k�in�j , can be any number between 0 and
kj, according to the number of agents acting on his advice.
Figure 1 shows the in-degree distribution for various
numbers of agents N, network connectivity p, and mem-
ory length m. These values were obtained after averaging
over both network and strategy space disorders. The first
striking observation from Fig. 1(a) is that over a wide
range of parameters the inlink distribution is described
by a power law with a sharp cutoff. Thus, the average
number of leaders with k followers, Nk, is a scale-free
distribution [18]. This happens in spite of the fact that the
058701-2
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substrate network, which is an ER graph is not a scale-
free network, and therefore it was not introduced a priori
into the underlying structure. The scale-free character of
the influence network F is selected by the reinforcement
learning nature of the agent-agent interaction rules. The
fact that a broad scale-free structure is selected on the
back of a Poisson distributed network seriously limits
the size of the leadership. Indeed, Fig. 1(d), which shows
the nonleaders, or followers, expresses this fact: the pure
followers constitute over 90% of the population for the
cases presented in Fig. 1(a).

Plotting Nk=N1, all the curves can be collapsed in the
scaling regime up to their cutoffs, indicating that
Nk�N;m;p� / k��N1�N;m;p�. The power of the decay,
� is very close to unity, which means that kNk is inde-
pendent of k and the other parameters in the scaling
regime. Since k is the influence of a leader with k fol-
lowers, kNk represents the total influence of the kth layer
in the leadership hierarchy. The above observation there-
fore means that all layers of the hierarchy are equally
influential; influence is evenly distributed among all lev-
els of the leadership hierarchy. This result is robust and
insensitive to the particular parameters m, p, and N, for
N large (>50) and pN > 5, even in the low m (memory)
regime. Here, however, oscillations build up around the
1=k behavior which still serves as a backbone for the
leadership structure, but it becomes less obvious as m is
decreased; see Fig. 1(b). Another important observation is
that N1�N;m;p� depends strongly only on p and not on N
or m, thus N1�N;m;p� � a�p�, as shown in Fig. 1(c).
Therefore, we have

Nk�N;m;p� � k��a�p�fk�N;m;p�: (1)

The fact that N1�N;m;p� is virtually independent of N
means that if the number of agents is increased, the
leadership structure and size in the scaling regime will
not change. What changes though, is the number of the
‘‘sheep’’ or followers, which is N0. It grows in proportion
to N, as seen in Fig. 1(d). Also, the cutoff at the high-k end
of the distribution occurs at larger k as N is increased. The
deviation of the function fk�N;m;p� from a constant
accounts for the fluctuations in the leadership structure
which vanish (the fluctuations) with increasing m. This is
because of the fact that the strategy space suffers a
combinatorial explosion as m is increased (there are in
total 22

m
strategies), and the agents’ strategies therefore

become highly uncorrelated [3–5].
This suggests that the results for large m can be repro-

duced if the agents simply play a random choice game
(RCG) on the network. In a RCG, agents do not use
strategies, but instead only toss a coin when making
predictions. Indeed, Fig. 1(a) shows that the RCG on the
ER network produces the same scale-free backbone of the
leadership structure. Thus, in our model the closeness to
the scale-free backbone is determined by the level of
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mutual decorrelation of agents’ strategies. This is to say
that increased trait diversity (strategy space) leads to
stable scale-free leadership structure.

Although the leadership structure is stable for large m,
the position of an individual agent in the leadership
hierarchy is not. By computing the time correlations
present in the number of inlinks, we can show that the
average lifetime of an agent in a particular leadership
position is short for large m, as detailed in Ref. [19]. In
contrast, at low m values, leaders become frozen in their
positions. In other words, in the low m regime, where trait
diversity is small, as in a dictatorship, where agents’
action space is severely limited, leaders ‘‘live’’ longer in
their positions.

Next, we briefly study the global performance of the
collective on the network. Consider choice A as the refer-
ence option, and denote by A�t� the attendance, or the
number of agents choosing option A at time t. One of the
most frequently used measures for a ‘‘world utility’’
function for the collective [20] is the variance � of the
fluctuations in the time series of A�t�. In the language of
economics, it is the volatility of the market, and from a
systems design point of view [20], it is the quantity that
we ultimately want to minimize.

As mentioned before, this game has two types of
quenched disorder embedded into it. A natural question
then is if one can find or evolve networks that achieve zero
or almost zero volatility given a group and its strategies
or, alternatively, if one can find strategies that achieve
zero, or near zero volatility, given a particular substrate
network. To answer this question, we performed simple
random searches in one of the quenched disorder spaces
(network or strategy), keeping the other quench disorder
fixed (strategy or network). An example with m � 2 and
m � 8 is displayed in Fig. 2(a) as a function of connec-
tivity p. The first conclusion is that overall, the collective
does worse with ‘‘smart agents’’ (large m) on highly
connected networks if they exchange information about
their strategies. However, in the low m regime (m � 2),
the system efficiency can improve not only beyond that of
the standard MG, but also beyond that of the RCG with-
out network (line labeled RCG), and even beyond the
standard MG’s best performance (which is at a different
value of m � 6 for these parameters). Thus, a networked,
low trait diversity system can be more effective as a
collective than a sophisticated group. Note that the opti-
mal p values are still much larger than the critical value
for the giant component in the ER network, which is 1=N,
and thus we need well connected single component
graphs in order to observe the collective efficiency
emerge from the agent-agent interactions. However, the
optimal values are actually in the realistic range for social
networks, giving for the average number of contacts � �
pN ’ 10–20. If N is varied, the optimum range for p
shifts such that the optimum value of pN remains con-
stant. Figure 2(b) shows a sample time series from the
058701-3



FIG. 2 (color online). Collective efficiency. (a) The time-
averaged volatility (over 5� 105 steps) of the market as a
function of the substrate network connectivity parameter, p.
The empty circles (m � 2) and the solid squares (m � 8) are
obtained by fixing the strategy space disorder and taking
randomly 50 network samples, while the crosses (m � 2) and
the diamonds (m � 8) are obtained with the network space
disorder fixed for 50 strategy disorders. Here S � 2 and N �
101. (b) A sample time series for one of the low lying points in
(a) at p � 0:1, m � 2. The black time series corresponds to a
run for the ordinary MG at minimum volatility which is at
m � 6, S � 2. The black curve has a variance of 2.36, while the
other curve has a variance of 1.07.
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optimal connectivity region. Notice the low volatility
compared to the best performance of the MG (in the
background). In the standard MG the variations in � at
the best performance point are low, and even an extended
search (average 500 samples) in the strategy disorder
space could not generate �s lower than 2.0, while, in
contrast, time series such as the one in Fig. 2(b) are easily
generated in average within 50 random samples in the
optimal connectivity region. This emerging collective
efficiency can be understood in terms of the crowd-
anticrowd description of the MG, as introduced by
Johnson, Hart, and Hui [5]. In the MG, low m means
that only a small number of different strategies are pos-
sible; thus, many agents are forced to use the same
strategy and behave as a crowd or a group. This grouping
effect generates the large volatility in the ordinary MG.
When the game is played on a network, however, an
agent, even if he shares the same strategy as the others
in a large group, now has the possibility to listen to some
other agents, and possibly even other groups. Thus, he is
no longer forced to behave the same way as his own
group, thereby breaking the grouping behavior. If, how-
ever, p is too large, there is a grouping behavior appearing
due to the network, because an agent has too many
followers if his score is the highest, creating a group on
the network. The two crowding effects compete and a
balance between them is reached in the optimum con-
nectivity region.

In summary, we have shown that the evolution of
multiagent games can strongly depend on the nature of
the agent’s information resources, including local infor-
mation gathered on the social network, a network whose
structure in turn is influenced by the fate of the game
itself. In our study, we allowed for this dynamic coupling
058701-4
between the game and the network by using reinforce-
ment learning as an ubiquitous mechanism for interagent
communications. Our observations are as follows: (1) If
reinforcement learning is used, a scale-free leadership
structure can be created, even on the backbone of non-
scale free networks. (2) In low trait diversity collectives,
enhanced collective efficiency may appear, making this
effect worthwhile for systems design studies [20].
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