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Dynamics of Semifluxons in Nb Long Josephson 0-� Junctions
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We propose, implement, and test experimentally long Josephson 0-� junctions fabricated using
conventional Nb-AlOx-Nb technology. We show that by using a pair of current injectors one can create
an arbitrary discontinuity of the Josephson phase and, in particular, a � discontinuity, just as in
d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson vortices which sponta-
neously appear. Moreover, using such junctions, we can investigate the dynamics of the fractional
vortices — a domain which is not yet available for natural 0-� junctions due to their inherently high
damping. We observe half-integer zero-field steps which appear on the current-voltage characteristics
due to the hopping of semifluxons.
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semifluxons has an energy band similar to the one in real Equations (1) and (2) are equivalent [7,17].
Introduction.—Theoretical and experimental investi-
gations of Josephson junctions (JJs) made of unconven-
tional superconductors showed that one can get so-called
� Josephson junctions [1], for which the first Josephson
relation has the form Is � �Ic sin� � Ic sin��� ��, in-
stead of Is � Ic sin�. There can be different reasons for
this. For example, in JJs formed using anisotropic super-
conductors with d-wave order parameter symmetry, the
additional phase shift of � happens when charge carries
enter the negative lobe of the order parameter and exit
from the positive lobe. Experimental realizations of �
junctions include junctions formed at the boundary be-
tween two crystalline films of cuprate superconductors
with different orientations [2], ramp junctions between
d-wave and s-wave superconductors [3,4], or JJs with a
ferromagnetic barrier [5,6].

If one considers a 1D long Josephson junction (LJJ)
made of alternating 0 and � parts, half-integer flux
quanta (so-called semifluxons [7,8]) may spontaneously
form at the joints between 0 and � parts. Semifluxons
were observed using SQUID microscopy in different
types of 0-� LJJs [4,9,10].

Semifluxons are very interesting objects which have
not been studied in detail, especially experimentally.
They are very different from integer fluxons. Fluxons
are solitons, but semifluxons are not — they are spontane-
ously formed and pinned at the 0-� boundary. Conse-
quently, a semifluxon of either polarity represents the
ground state of the system, while a fluxon moving in
the LJJ always represents an excited state. This makes
semifluxons attractive, e.g., for information storage and
processing in classical and quantum regimes. In spite of
pinning, semifluxons are able to hop from one 0-� bound-
ary to the other provided that they are not very far from
each other. A chain of semifluxons usually exists in the
antiferromagnetic ground state but can be ‘‘polarized’’ by
means of an applied dc bias current [11]. A semifluxon
has an eigenmode oscillation frequency, so a 1D array of
0031-9007=04=92(5)=057005(4)$22.50 
crystals. By controlling the spacing between semifluxons
(length of 0 and � pieces), one can control the properties
of such an artificial 1D crystal.

In this Letter, we propose and implement LJJs based on
conventional superconductors which allow one to study
arbitrary fractional vortices [12] and, in particular, their
dynamics. Until now, this was not possible using natural
0-� junctions which typically have a Stewart-McCumber
parameter �c � 5 or even smaller. Having much lower
damping, we succeeded to observe half-integer zero-field
steps in the current-voltage characteristics which appears
due to a nontrivial effect —hopping of semifluxons be-
tween neighboring 0-� boundaries. Low damping is also
important in terms of future observations of macroscopic
quantum effects involving fractional quanta [14].

The model.—The dynamics of the Josephson phase in
LJJs consisting of alternating 0 and � parts can be de-
scribed by the 1D perturbed sine-Gordon equation [7]

�xx ��tt � sin� � 
�t � �� �xx�x�; (1)

where��x; t� is the Josephson phase and subscripts x and t
denote the derivatives with respect to coordinate x and
time t. In Eq. (1), the spatial coordinate is normalized to
the Josephson penetration depth �J and the time is nor-
malized to the inverse plasma frequency !�1

p ; 
 �
1=

������

�c
p

is the dimensionless damping; � � j=jc is the
external bias current density normalized to the critical
current density of the junction. The function ��x� is a step
function which is � discontinuous at all points where 0
and � parts join. According to Eq. (1), ��x� is also �
discontinuous at the same points as ��x�. We call these
points phase discontinuity points.

To describe 0-� LJJs, one can use directly the equation
with alternating critical current density [3,8,15,16]

�xx ��tt � sin� � 
�t � ��x�; (2)

written for the continuous phase��x; t� � ��x; t� � ��x�.
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Is it possible to create a 0-� LJJ (LJJ with � disconti-
nuity) using a conventional LJJ? The fact that a junction
is 0-� is contained in the �xx�x� term. If ��x� is a set of
steps, then �xx�x� is a set of ���x�=x singularities as
shown in Figs. 1(a)–1(c). If we do not have initially the
�xx term in Eq. (1), we can substitute its effect by in-
troducing a properly shaped bias current ���x� � �xx�x�
in addition to the main bias current �. To mimic one �
discontinuity, the ���x� profile should be the one shown in
Fig. 1(c). For the sake of practical treatment, one can
approximate it by two rectangular pulses, as shown in
Fig. 1(d). Such a bias profile can be created by two current
injectors of width �w situated as close as possible to each
other. The current of the amplitude Iinj � �Ic�J=�w
flowing from one injector to another should create a �
discontinuity of the Josephson phase. Thus, one can create
an artificial 0-� LJJ provided that the width of the whole
injector construction is well below �J. Note that, passing
different currents, one can create arbitrary � disconti-
nuities instead of a � discontinuity, and study arbitrary
fractional vortices, if they appear [11]. This concept is a
generalization of the idea to use a pair of injectors to
insert a fluxon (2� discontinuity) in an annular LJJ [18].

In conventional LJJs, the phase � � � is continuous
while Iinj � 0. When we increase Iinj, the phase � devel-
ops a jump � / Iinj at x � xinj. In practice, instead of
a jump we have a rapid increase of the phase from � to
�� � over a small but finite distance. Physically, this
means that by passing a rather large current through the
piece of the top electrode between two injectors we
‘‘twist’’ the phase � by � over this small distance; i.e.,
we insert a magnetic flux equal to ��0=�2�� in a small
distance between injectors. This flux has a characteristic
size of the order of the distance between injectors or of
their width. The junction may react on the appearance of
such a discontinuity by forming a solution ��x� [or ��x�]
which changes on the characteristic length �J outside the
injector area, and corresponds, e.g., to the formation of a
fractional Josephson vortex, as discussed below.

In the experiment, the injectors are never ideal due to
technological constraints, and one has to calibrate them
to know the value of current needed to get, e.g., a �
discontinuity. We do this by measuring the dependence
of the critical current Ic of the LJJ on the current through
the injectors Iinj, and comparing the obtained Ic�Iinj�
dependence with the Ic��� dependence calculated theo-
retically. As a result we get Iinj=�.
FIG. 1. ��x�, �x�x�, �xx�x�, and its approximation ���x� by two
rectangular pulses of the width �w and amplitude �=�w2.
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The �c��� curve (�c is the maximum normalized
supercurrent) numerically calculated for L � 2�J (as in
our samples) is shown in Fig. 2. Details on the calcula-
tion of �c��� for different L will be given elsewhere [19].
It is important to note that �c��� has maxima at � � 2�n
and cusplike minima (possibly with hysteresis) at � �
��2n� 1�. The value of �c at the minimum depends on
the junction length and varies from 0 for a short junction
to 2=� for an infinitely long one [19].

Experiment.—The samples were fabricated [20] using
standard Nb-AlOx-Nb technology with low critical cur-
rent density jc 
 100 A=cm2 to have �J � 30 �m as
large as possible in comparison with the injector size.
Data reported here were obtained from the sample shown
in Fig. 3 at T 
 5 K.

The measured I-V characteristics and Ic�H� depen-
dences (presented below) ensure good sample quality
and the absence of trapped magnetic flux.

To calibrate the injectors, we measured the dependence
Ic�Iinj� at H � 0 shown in Fig. 4. Obviously, the depen-
dence is similar to Fig. 2, and the minimum Ic is about
10% of the maximum Ic, in agreement with numerical
calculations for L=�J � 2. From Fig. 4, we find that � �
�� corresponds to Iinj 
 �13:5 mA and � � �� corre-
sponds to Iinj 
 �12:8 mA. The pattern is slightly shifted
along the Iinj axis probably due to self-field effects. Thus,
the maximum Ic is reached at Iinj 
 �0:3 mA.

The value of Ic at the maxima slowly decreases with
increasing jIinjj. This effect can be reproduced in numeri-
cal simulations using the model (1) for injectors with
finite �x and �w as in our samples.

One of the specific features of natural 0-� junctions is
the minimum in the Ic�H� dependence at H � 0 [3]. It
was calculated [15] that when the 0-� junction is short
(L� �J) the minimum is very deep and Ic reaches zero
atH � 0. AsL increases, the minimum gets more shallow
and at L� 10�J almost disappears. In our artificial 0-�
LJJ with L 
 2�J the minimum should be strongly de-
veloped. We have measured and compared Ic�H� at � � 0
(no discontinuity) and at Ic�H� at � � �� (Iinj �
�13:5 mA and Iinj � �12:8 mA). The results are pre-
sented in Fig. 5 and are in good agreement with the
FIG. 2. Normalized critical current �c vs the Josephson
phase discontinuity � / Iinj, numerically calculated for
L � 2�J.
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FIG. 5. Experimentally measured dependence �Ic�H� for
0j0, ��j0, and ��j0 states of the junction. The dependence
of the negative critical current �Ic�H� is not shown, but it is
perfectly mirror symmetric with respect to the H axis.

FIG. 3. Optical microscope picture of the LJJ with two in-
jectors. The width of the LJJ is w � 5 �m.
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prediction [15]. One can notice that, at each value of Iinj
corresponding to a 0-� LJJ, the left and the right lobes of
the Ic�H� curve look somewhat asymmetric with the pe-
riod of oscillations being different for H > 0 and H < 0.
Again, this is related to the finite distance and width of
the injectors and can be reproduced in simulations. A
similar asymmetry has been calculated in Ref. [21]
(Fig. 12, the last s-wave plot), where the ‘‘inserted’’ flux
is due to a trapped vortex, coupling �0=2 to the center of
a conventional junction. If the size of the trapped vortex
(in our case �w and �x) approaches zero, Ic�H� ap-
proaches a perfectly symmetric shape with equal oscil-
lation periods atH > 0 andH < 0 (see Fig. 12 of Ref. [21],
the first d-wave plot).

When a LJJ has a � discontinuity in its center, the
ground state consists of a semifluxon spontaneously
formed and pinned at the � discontinuity [7,11,15], as
shown in Fig. 6. When L� �J, the semifluxon solution
[7,8], shown in Fig. 6 by a dashed line, is not valid any-
more as it does not satisfy the boundary conditions
�x��L=2� � 0. The semifluxon solution derived in
Refs. [7,8] is valid in an infinite LJJ only. To construct
the solution for a LJJ of finite length, we introduce images
(antisemifluxons) situated outside the left and the right
edge of the junction at a distance of L=2 from each edge
[22]. The final magnetic field profile �x�x� is shown in
Fig. 6 by the thick solid line.
FIG. 4. Experimentally measured dependence of Ic�Iinj� (full
circles) and the maximum current of the semi-integer zero-
field steps Im�Iinj� (open circles) at H � 0. The dependences are
perfectly mirror symmetric relative to the Iinj axis.
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If one applies a bias current to a chain of antiferromag-
netically ordered semifluxons, the semifluxons can re-
arrange [11]: The positive semifluxon at x � 0 hops to
the � discontinuity at x � L and the image hops from
x � L to x � 0. This process is accompanied by a transfer
of flux equal to �0 across the right edge of the junction.
Subsequently, the same mutual hopping happens at the
left edge of the junction and the flux equal to �0 is
transferred across the left edge also. This is repeated
periodically in time, and the net transferred flux results
in a finite voltage across the junction. This process is very
similar to the dynamics which takes place in a LJJ biased
at the zero-field step (ZFS) [23].

Presuming that the flux in our 0-� LJJ is transferred
with the same maximum velocity, but only �0 rather 2�0

per hopping/reflection, we should observe half-integer
ZFS on the I-V characteristics of the 0-� LJJ, as was
recently predicted by Stefanakis [28]. Note that to ob-
serve semi-integer ZFS the 0-� LJJ should be not very
long (L & 5�J) so that the semifluxons can still hop over
this distance.

In Fig. 7, we show two I-V characteristics taken at
H � 0: one with a classical ZFS recorded at Iinj � 0
and another with a semi-integer ZFS registered at
Iinj � �13:5 mA. The asymptotic voltage of the ZFS is
FIG. 6 (color online). Sketch of a semifluxon in a 0-� LJJ and
two images outside the junction. The dashed line shows how the
magnetic field of semifluxon would look in an infinite LJJ. The
solid line shows the magnetic field of a semifluxon in a LJJ of
L=�J � 2. The arrow indicates the localized field produced by
the injector.
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FIG. 7. Experimentally measured integer and semi-integer
zero-field steps on the I-V characteristics of the artificial 0-�
LJJ at Iinj � �13:5 mA (full circles) and Iinj � 0 (open circles).
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VZFS � 388 �V, while for the semi-integer ZFS it is
VZFS=2 � 196 �V. Thus, 2VZFS=2 
 VZFS with an accu-
racy of 1%. This is the experimental confirmation of
the existence of semi-integer ZFS [28] and semifluxon
hopping [11]. We also observe resonant structures at the
half-integer ZFS, which are similar to structures we see
in simulations. This kind of resonances typically appears
when the magnetic flux moves in a LJJ with inhomoge-
neities [29].

We also measured the behavior of the semi-integer ZFS
as a function of Iinj and found that the asymptotic voltage
of the semi-integer ZFS does not depend on Iinj. When
� � �, one has two types of fractional vortices in the
system: a vortex � at x � 0 and two images (antivortices)
�� 2� at x � �L. When the vortex and antivortex hop
and exchange positions, the total flux transferred is still
�0 (they exchange a virtual fluxon [11]). Although the
voltage of the semi-integer ZFS is not affected by Iinj, the
amplitude of the step Imax changes with Iinj until the step
gets completely hidden by the critical current. The de-
pendence of the maximum current of the semi-integer
ZFS on Iinj is shown in Fig. 4. No high order ZFSs were
observed since our LJJ is rather short (�2�J).

Conclusions.—In conclusion, we have proposed, im-
plemented, and tested experimentally long Josephson
junctions based on Nb-AlOx-Nb technology with an ar-
bitrary � discontinuity of the Josephson phase created by
passing a current through a pair of injectors. Formally,
this system is equivalent to a 0-� long Josephson junction
made of unconventional superconductors and allows one
to study the dynamics of fractional vortices. We con-
firmed the hopping of semifluxons under the action of
applied bias current which manifests itself as the appear-
ance of semi-integer zero-field steps in the current-
voltage characteristics of the junctions.

Among the many interesting questions concerning the
physics of fractional vortices, we just mention two ex-
amples for which arbitrary quantization and/or low
damping are essential: (i) How does the eigenfrequency
of a fractional vortex depend on the flux carried by it?
057005-4
How does the coupling between neighboring fractional
vortices affect their eigenmodes (eigenmode splitting),
and can one construct an artificial 1D crystal with con-
trollable energy bands? (ii) Does a semifluxon behave as
a spin- 12 particle? Can it make quantum transitions "$#
or be in a superposition of both states, or does flux
conservation prevent this? Can one create superpositions
of states such as "#$#" for two coupled semifluxons?
Finally, we note that an annular system with, e.g., three
semifluxons may serve as an interesting system to study
frustration effects.
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