
P H Y S I C A L R E V I E W L E T T E R S week ending
6 FEBRUARY 2004VOLUME 92, NUMBER 5
Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States
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We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across
a quantum Hall line junction. We identify a series of quantum critical points between successive strong
and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance
near the critical magnetic fields Bc is a function of a single scaling argument jB� BcjT��, where the
exponent � � 0:42. This puzzling resemblance to a quantum Hall-insulator transition points to the
importance of interedge correlation between the coupled edge states.
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taking advantage of the inherent atomic precision of exposed edge, forming two strips of two-dimensional
Edge states in the quantum Hall effect provide a highly
tunable system for the study of quantum transport in one
dimension [1]. Following the prediction of chiral
Luttinger liquids in the fractional quantum Hall effect
[2,3], extensive effort has been devoted to the study of
tunneling between quantum Hall edge states [4–11].
Tunneling of an electron into a Luttinger liquid is
strongly suppressed and theories predict a power-law
tunneling conductance with a universal exponent related
to the quantum number of the bulk quantum Hall liquid.
Experimental studies of tunneling between edge states
across a quantum point contact [8] and tunneling between
an edge state and a three-dimensional metal [9,10] have
generally tended to support the predicted Luttinger liquid
behavior. However, there remain important open ques-
tions regarding the experimentally observed exponent
and its correlation to the bulk quantum Hall states [11].

A different and perhaps more intriguing geometry for
the study of edge state tunneling involves a line junction
that juxtaposes two parallel, counterpropagating edge
modes against each other. Such a junction has been ini-
tially envisioned as a Hall bar with a long narrow gate
that couples two right- and left-moving edge channels of
fractional quantum Hall liquids [12,13]. In the limit of
weak bias, the conductance across the line junction re-
mains quantized as backscattering between the edge
states is negligible. For strong bias, interedge backscatter-
ing is suppressed and the conductance across the line
junction vanishes. In between the two limits, the inter-
mode backscattering is mediated by defects in the line
junction and a metal-insulator transition is predicted
[12,13]. The transition is characterized by a temperature
dependent conductivity that vanishes in the insulating
phase and diverges in the metallic state in the limit of
zero temperature.

Confirmation of the predicted metal-insulator transi-
tion has remained elusive as lithographic limitations
and vertical offset of the gates from the plane of two-
dimensional electrons complicate the realization of a line
junction. An alternate approach to a line junction involves
0031-9007=04=92(5)=056802(4)$22.50 
molecular beam epitaxy (MBE) and inserting a precisely
defined semiconductor barrier in the plane of a two-
dimensional electron system through the technique of
cleaved edge overgrowth [14,15]. Such a junction strongly
couples two counterflowing edge modes through inter-
edge tunneling and features sharp resonances whenever
the single particle energy levels coincide with the chemi-
cal potential [15]. These resonances are particularly en-
hanced in its width and height at zero-bias crossings,
indicating the importance of electron-electron interac-
tion. Proposed explanations include enhanced tunneling
driven by electron-electron interaction [16–18], mixing
of the states with equal transverse momentum from the
opposite sides of the barrier [19–21], and a coupled
Luttinger liquid interacting through a strongly backscat-
tering center in the barrier [22].

In this Letter, we report on the observation of a cascade
of quantum phase transitions exhibited by tunnel-coupled
edge states of quantum Hall line junctions. Two counter-
propagating edge states are separated by an 8.8-nm-wide,
�100-�m-long semiconductor barrier. We identify a ser-
ies of quantum critical points between successive strong
and weak tunneling regimes that are reminiscent of the
metal-insulator transition in two dimensions. Scaling
analysis shows that the conductance near the critical
magnetic field Bc is a function of a single scaling
argument jB� BcjT

��, where the exponent � � 0:42.
This apparent similarity to the quantum Hall-insulator
transitions is quite puzzling due to the one-dimensional
character of edge states. Whether the resemblance to a
quantum Hall-insulator transition is coincidental or oc-
curs from some deeper physics remains to be clarified.

The line junctions are fabricated by cleaved edge over-
growth using MBE [14,15]. The initial growth on a
standard (100) GaAs substrate consists of an undoped
13-�m GaAs layer followed by an 8.8-nm-thick digital
alloy of undoped Al0:1Ga0:9As=AlAs, and completed by a
14-�m layer of undoped GaAs. This multilayer sample is
cleaved along the (110) plane in an MBE machine and
a modulation-doping sequence is performed over the
2004 The American Physical Society 056802-1
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electron systems separated from each other by the
8.8-nm-thick barrier. A mesa incorporating the barrier
and the two-dimensional electron systems into a junction
that is �100 �m long is defined by photolithography. The
inset of Fig. 1(a) shows the planar layout of the line-
junction device. In the quantum Hall regime, Landau
quantization creates two counterpropagating edge states
that are separated by a smooth, rectangular barrier. The
density of the two-dimensional electron system in the
devices studied was n � 2� 1011 cm�2 with a mobility
of �1� 105 cm2=Vsec.

Figure 1 illustrates the zero-bias conductance (ZBC),
G � I=V, across the line junction and the magnetoresis-
tance of the two-dimensional electron system parallel to
the tunnel barrier. The ZBC exhibits a series of conduc-
tance peaks that oscillates with increasing magnetic field
before abruptly dropping to zero above 6.7 T. No oscil-
latory features can be seen at higher magnetic fields. This
is thought to occur from decoupling of the counterpro-
pagating edge modes beyond the last zero-bias conduc-
tance peak [16,20–22]. Shubnikov–de Haas oscillations
are found in the magnetoresistance for low magnetic fields
and integer quantum Hall states beyond 2 T. The period of
Shubnikov–de Haas oscillations of the two-dimensional
electron systems does not match the conductance oscil-
lations, which are sharper and more distinct than the
oscillations in the magnetoresistance. The mismatch in
the oscillations arises naturally as a consequence of the
electronic states near the junction occurring at higher
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FIG. 1 (color online). (a) Representative zero-bias conduc-
tance, G � I=V, of the line junction at 300 mK. Inset: layout
of the line junction and measurement geometry. Two counter-
propagating edge states are juxtaposed against the barrier in
the quantum Hall regime. (b) Magnetoresistance from one of
the two-dimensional electron systems in the line junction.
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energies than the corresponding bulk states with the
same quantum number [15,19]. The single particle energy
levels near the barrier consist of a series of intersecting
Landau levels from the left and right sides of the barrier.
The uncompensated carriers beneath the barrier further
shifts the energy levels in the vicinity of the tunnel
barrier from that of an ideal two-dimensional electron
with uniform areal density [16].

In the noninteracting picture of tunneling across the
line junction, the ZBC peaks occur whenever the energy
levels of the left and right edges coincide with the Fermi
level at zero bias. Under Landau quantization the spatial
coordinate, x, corresponds to a guiding center state with a
well-defined transverse momentum, ky, through the rela-
tion x � �ky‘

2
�, where ‘� is the magnetic length. In the

case of a high quality, low disorder barrier, tunneling
across the junction must conserve momentum as the
transverse momentum, ky, is a good quantum number.
Whenever the levels coincide, states with equal transverse
momentum are mixed and electrons from one side of the
barrier can tunnel over to the opposite side. The ZBC
peaks consequently represent tunneling between edge
states with x � 0 or conversely ky � 0 momentum states.
Since the x � 0 guiding center state lies at the center of
the barrier, there is a large overlap of the electronic wave
functions which facilitates tunneling through the barrier.
Introduction of electron-electron interaction creates a
tunnel gap in the energy spectrum as the gain in the
correlation energy compensates for the cost of Coulomb
interaction energy [16,18]. This is thought to be respon-
sible for the enhancement in the width and height of the
ZBC peaks.

Figure 2 shows the magnetic field dependence of the
ZBC between 1.5 and 8.3 K. The ZBC peaks grow in
amplitude with increasing magnetic field and decreasing
temperature. Above 7 T, the ZBC becomes vanishingly
small as the momentum conserved tunneling across the
line junction can no longer be satisfied and the conduction
occurs parallel to the junction, along the barrier. A strik-
ing feature of the conductance data in Fig. 2 is the series
of critical points on the high field side of the conductance
peaks. These critical points separate the ZBC peaks from
the low conductance regions where the tunneling is
largely suppressed. Interestingly, no critical points can
be seen on the lower field side of the ZBC peaks. In terms
of single particle levels, there are excess states above the
energy level crossings on the low field side prior to the
entry into the zero-bias peaks. On the other hand, elec-
tronic states are depopulated as soon as the system exits
the ZBC peaks on the high field side. Consequently, the
observed asymmetry may be reflecting the structure of
the energy level crossings as the population of the filled
states changes as a function of magnetic field. The inset of
Fig. 2 illustrates the temperature dependence of ZBC at
the three largest zero bias-conductance peaks. ZBC in-
creases slowly as temperature is reduced and saturates
below 1 K.
056802-2
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FIG. 3 (color online). Critical points and scaling analysis of
the tunneling conductance. (a) Conductance data near Bc �
3:39 T. (b) Conductance data near Bc � 6:73 T. (c) Scaling
analysis of the conductance data near Bc � 3:39 T as a func-
tion of jB� BcjT

��. (d) Similar analysis performed for data
near Bc � 6:73 T.
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FIG. 2 (color online). Conductance of a line junction for
various temperature between 1.3 and 8.5 K. Inset: temperature
dependence of conductance for the first three peaks.
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Figures 3(a) and 3(b) show an expanded view of the
ZBC near the critical points around Bc � 3:39 and 6.73 T
with corresponding critical conductance values of Gc of
approximately 0:05e2=h and 0:03e2=h. Immediately
above (below) the critical magnetic field, Bc, ZBC de-
creases (increases) with temperature. Such a behavior
about the critical points is reminiscent of the quantum
Hall-insulator transitions in two dimensions. Figures 3(c)
and 3(d) illustrate the results of the scaling analysis of the
ZBC about the critical points. For both cases we find that
the tunneling conductance G near Bc can be scaled as an
argument of jB� BcjT

��, where � � 0:42. While the
critical point at Bc � 3:39 T features a limited scaling
regime and consequently a greater uncertainty in the
value of the critical exponent, the extended scaling re-
gime around Bc � 6:73 T and its smaller variance of the
exponent provide confidence on the scaling form.
Remarkably, this is the same universal scaling form and
the exponent found in quantum Hall-insulator transitions
in bulk two-dimensional electron systems [23].

The scaling result seen above raises a number of im-
portant questions regarding the quantum Hall line junc-
tions, namely, (1) what is the physics behind the observed
phase transitions? (2) what phases lie on either side of the
critical points? and (3) what is the significance of the
similarity to the quantum Hall-insulator transitions?
Answers to these questions are largely unknown and
require further theoretical investigation. Based on the
separation of the edge states by a tunnel barrier on the
order of magnetic length, it follows that the correlation of
electrons on the opposite sides of the barrier should play
an important role in the electronic transport across the
056802-3
line junction. The effect of electron-electron interaction is
then to transform the pair of counterpropagating edge
states into ground states characterized by the interedge
Luttinger correlation.

The high conductance and the low conductance re-
gimes then represent a pair of highly correlated ground
states that are separated by a quantum phase transition
and that differ primarily in its ability to tunnel across the
line junction. The high conductance, ‘‘metallic’’ phase
corresponds to a state with a number of edge electrons
partaking in the tunneling across the barrier and back-
scattering parallel to the junction. Above the critical
magnetic fields, tunneling become suppressed and pri-
mary conduction now occurs parallel to the barrier in
the low conductance, ‘‘insulating’’ phase. While the re-
semblance to a quantum Hall-insulator transition is sug-
gestive of some type of quantum Hall physics, edge states
are generally coupled weakly to the bulk quantum Hall
states and are predominantly one dimensional in charac-
ter. Whether these states possess significant enough quan-
tum Hall correlation to produce the observed exponents
remains unclear.
056802-3
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Although a disorder driven metal-insulator transition
in a line junction has been predicted earlier [12,13], the
high quality of the MBE-grown barrier and the momen-
tum conservation in the single particle tunneling lead us
to discount the likelihood of disorder playing a prominent
role. The ballistic property of edge states further mini-
mizes the possible decoherence effects associated with
disorder. Based on these features of the line junction, we
conclude that disorder should not be playing an appre-
ciable role in the observed transitions.

In the theory of tunneling based on the interedge phase
coherence across the line junction, the ZBC peak states
are explained in terms of a broken symmetry state char-
acterized by a tunnel gap in the energy spectrum [16].
Interaction between the left and the right edge states
produces a Luttinger liquid whose symmetry is broken
by a phase transition into a one-dimensional pseudospin
ferromagnet. The gap in the tunnel spectrum is estimated
to be �1 K in the samples with 8.8-nm-wide barrier
[16,18]. As the magnetic field is switched away from the
ZBC peaks, the cost in the Coulomb energy increases as
the tunnel gap is reduced. The system evolves continu-
ously until it can no longer sustain a tunnel gap.
Subsequent motion of electrons occurs parallel to the
barrier as tunneling is no longer possible. It remains to
be seen whether such a scenario will produce a quantum
phase transition with observed critical exponents.

In the model of Kim and Fradkin [22], interedge
tunneling in the line junction is equivalent to a coupled
one-dimensional system interacting through short
range interactions. Instead of considering a continuous
distribution of tunneling sites along the junction, it is
postulated that the tunneling between the right- and
left-moving edge modes occurs primarily through a
weak tunneling center. Introduction of electron-electron
interaction within the proposed framework allows for a
rigorous mapping of two parallel edge channels into a
coupled Luttinger liquid characterized by an effective
Luttinger parameter K. Depending on the coupling con-
stant between the left and right moving branches, there is
a quantum phase transition between a state with no tun-
neling for K > 1 or perfect tunneling K < 1. The experi-
mentally observed sequence of critical points represents a
series of K � 1 quantum critical points between the
strongly and weakly tunneling regimes. The sequence of
critical point therefore mimics a series of opening and
pinching off of the tunneling center as a function of the
magnetic field. While our data are qualitatively consistent
with the proposed scenario by Kim and Fradkin, further
clarification of the predicted transitions and associated
critical exponents is necessary.

In conclusion, we have studied the temperature depen-
dent transport across a quantum Hall line junction. The
tunnel-coupled, counterpropagating edge states produce a
series of quantum critical points between the highly and
weakly tunneling regimes. These critical points indicate
a series of quantum phase transitions between two corre-
056802-4
lated one-dimensional ground states arising as a result
of strong interedge correlation. Scaling analysis shows
that the conductance near the critical behavior scales as
jB� BcjT��; � � 0:42, similar to that of quantum Hall-
insulator transitions. Whether there is a strong quantum
Hall correlation across the line junction or some other
physics is responsible for the observed transitions re-
mains to be explained.
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