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Multiphonon Resonances in the Debye-Waller Factor of Atom Surface Scattering
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He atom surface scattering by dispersionless phonons is treated employing coupled channel (CC)
calculations. At low energies, they predict a behavior opposite to perturbative Born or ‘‘exponentiated’’
Born approximation: strong resonant phonon stimulated elastic and inhibited inelastic scattering. The
corresponding resonances have not been observed in earlier CC results since these have considered only
the temperature dependence of the Debye-Waller factor at higher energy or omitted the attractive well.
The resonances can be interpreted in terms of bound states in the attractive well with several excited
vibrational quanta. They may be observable for, e.g., He scattering by a cold Xe=Cu surface.
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sticking probability for light scattered particles [20].
In contrast to FOM, the EBA takes quantum effects

associated with the motion of the scattered particle at

attractive well in detail. At first sight, we expected only
small effects: Possible bound-state resonances occur at
low energies where only few phonons get excited. In EBA
The scattering of helium atoms is an important tool for
the investigation of structural and dynamical properties
of surfaces [1–7]. In contrast to thermal neutron scatter-
ing by solids, the stronger coupling of atoms usually leads
to strong multiphonon effects rendering the theoretical
treatment more difficult. The theoretical interpretation of
experiments therefore had to retreat to approximations
and assumptions which have not been checked systemati-
cally in detail.

There are, e.g., the extensions of the distorted wave
Born approximation (DWBA) [8] to higher orders [9,10].
In order to describe n-phonon processes properly, one has
at least to go to nth order of perturbation theory. With
increasing n, this becomes increasingly difficult and,
hence, cannot be executed without introducing further
approximations. Furthermore, unitarity is violated if one
straightforwardly quits the calculation beyond nth order.
Unitarity is crucial for a correct value of the Debye-
Waller factor (DWF) (the portion of elastically scattered
particles), in particular, if the number of excited phonons
is large and, hence, the DWF is small.

A fully unitary approximation which allows one to
treat an arbitrary number of excited phonons is the so-
called ‘‘exponentiated Born approximation’’ (EBA). It is
a quantum mechanical generalization of the ‘‘forced os-
cillator model’’ (FOM) in which the oscillator is subject
to a classical force F�t� [11–16]. The wave function of the
FOM is a ‘‘coherent state’’: the oscillator ground state
shifted in phase space [by an amount proportional to the
Fourier component F�!� at the oscillator frequency ! of
the force F�t�]. In EBA the shift is proportional to the
corresponding quantum mechanical force matrix element
[17–19]. In FOM and EBA, the quantum effects associ-
ated with the substrate phonons are properly taken into
account: There is a nonzero elastic scattering probability
as measured by the DWF and a suppression of low energy
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least partly into account. Thus, for instance, the threshold
behavior of the single-phonon scattering probabilities is
correctly described: Below threshold the probabilities
vanish and just above the threshold energy Es one finds
the correct behavior /

���������������

E� Es
p

. As a consequence, also
the low energy limit of sticking probabilities [21] is
properly described.

The EBA treatment of inelastic scattering probabilities
has proven very useful for the interpretation of many
scattering systems as well as adsorption [22] and accom-
modation [23] and, in particular, the He atom scattering
(HAS) from phonons of various substrates [2].

A possibility to check the validity of EBA theoretically
is, of course, to consider simple models which can be
solved exactly (for instance, numerically) and to compare
the exact results with approximations. A first step in this
direction has been done for the temperature dependence
of the DWF for H, He, and Ne scattering by Xe=graphite
[24]. In this case, good agreement between EBA and
exact coupled channel (CC) results were obtained for H
and He at energies above 50 meV. There were small
quantitative differences for He and bigger ones for Ne.

More recently, the dependence of DWF and one or two-
phonon transitions for He and Ne scattered by Xe=Cu on
initial energies (between 0 and 150 meV) was considered.
Here the main emphasis was on differences between
DWBA data for nonlinear coupling models as compared
to EBA and exact ones for linear coupling [25]. The
results indicated good agreement between EBA and exact
CC data for He and acceptable agreement for Ne. DWBA
for nonlinear coupling produces some multiphonon ef-
fects but differs strongly from exact and EBA results. To
avoid problems with bound-state resonances, however, in
these calculations the attractive part of the potential was
omitted.

In this Letter, we consider the consequences of an
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FIG. 1. Comparison of EBA and CC excitation probabilities
Pm;0 of the first seven vibrational levels (including the ground
state) as a function of the initial kinetic energy Ei measured in
meV. Note the pronounced structure in the CC results which is
absent in EBA and in the CC results of [25].
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for Xe=Cu below 10 meV, for instance, mainly zero and
one phonon excitations occur. Bound-state + single-
phonon resonances, however, cannot be seen asymptoti-
cally below the one phonon threshold. So we expected
some (weak) two-phonon peaks on top of a strong single-
phonon continuum. Much to our surprise, something quite
different occurred: There were strong two-phonon and
three-phonon peaks in the DWF (and corresponding dips
in the single-phonon continuum) and some three and four
phonon peaks on top of the single-phonon probabilities
(and corresponding dips in the two-phonon continuum).
All these effects are absent in (straight) EBA. If bound-
state transitions would be additionally taken into account,
the CC results for He scattered by Xe=Cu indicate that at
least 13 states would have to be considered in a secular
equation treatment on top of EBA.

The two-dimensional model which we used in our
studies is the same one as in [24,25]: It is applicable to
He atom scattering (without parallel momentum transfer)
from vibrating noble gas adsorbates weakly bound to
metal or graphite surfaces, typically Xe adsorbed on Cu
or graphite. The scattered atoms couple most strongly to
the vertically polarized adsorbate phonons which show
little dispersion and therefore can be accurately described
by an Einstein model. The Hamiltonian then takes the
form (z; Z the He,Xe coordinates)

H �
p2

2m
�

P2

2M
�

M
2
!2Z2 � v�z� Z�; (1)

with m � 4mp, M � 131mp (mp the proton mass), and
	h! � 2:7 meV. For the He-Xe interaction, we take a
Morse potential v�z� � D�e�2�z � 2e��z� with D �
6:6 meV and � � 1:22 �A�1.

Xe=Cu has been investigated extensively— experimen-
tally [26] as well as theoretically [2]—and, hence, may
be used as a useful and simple testing ground for theo-
retical methods. For further systems compare [27]. The
parameters quoted above are appropriate for Xe=Cu.

Together with the potential v�z�, we introduce the force
f�z� � �@v�z�=@z and its matrix elements fn;0 �
hpn; outjf�z�jp0; ini between scattering states of the
Morse potential with incoming (outgoing) momenta p0

(pn). We have used the labels 0; n to indicate that we
consider initial (final) states with 0 (n) phonons. Energy
conservation then says (Ei the initial kinetic energy)

Ei �
p2
0

2m
�

p2
n

2m
� n 	h!: (2)

A key quantity in EBA is the number N � jf1;0j
2=

�2M 	h!� which is the single-phonon excitation probability
in DWBA and the average number of excited phonons in
EBA. The probability of excitation of n phonons in EBA
is given by the well-known Poisson distribution Pn;0 �
e�NNn=n!. In particular, one has the following for the
DWF: P0;0 � e�N . Since we work only with the single-
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phonon matrix elements f1;0, the threshold behavior of
the two-phonon transitions is not correctly described.
This is only a small error of EBA, and here we refrain
from correcting it. In principle, this can be done by
omitting the contributions below threshold and ‘‘unitar-
izing’’ the remaining terms.

In the coupled channels approach, the wave function is
expanded in oscillator eigenfunctions (channels). The
Schrödinger equation then becomes a system of coupled
1D differential equations. If the potential is replaced by
a stepwise constant potential—with sufficiently many,
e.g., 100 to 200, steps to ensure a good representation of
the actual v�z�— one can use the transfer matrix method
to solve these equations. We work with local reflection
(LORE) matrices in order to avoid numerical instabili-
ties due to closed channels. The LORE matrices (apart
from normalization factors) approach the scattering
matrices Sn;m asymptotically [28] and, hence, directly
yield the corresponding transition probabilities Pn;m in-
troduced above.

We use 100 equidistant steps for z to represent the
potential between zi � �1:4 �A and zf � 5:5 �A, Nv � 7
channels, and 600 equidistantly spaced energies between
E � 0 meV and E � 12 meV or E � 60 meV. The small
energy spacing is necessary to resolve the resonance
structure occurring at energies below 12 meV. Below
12 meV, actually Nv � 5 channels are sufficient to ensure
convergence.

Figure 1 shows the transition probabilities Pn;0 for
n � 0 to n � 6. For larger energies they agree well with
the results of [25]. This can be expected since for energies
well above D � 6:6 meV the attractive well should not
play an important role. At energies below 10 meV, how-
ever, there is additional structure which shows up in
neither EBA nor [24] or [25].

Figure 2 shows this structure in more detail on an
expanded energy scale: There are various pronounced
peaks or dips in the first three Pn;0. They can be associated
056102-2
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FIG. 2. The low energy structure of Fig. 1 in more detail.
There are three peaks in the DWF and three more in the one
phonon probability. The peak in the one phonon probability
near the two phonon threshold is no resonance but a threshold
anomaly. The weaker structures above 8 meV will not be
discussed in detail. Below the single phonon threshold, there
is additional structure, indicated by the dash-dotted line,
which occurs if a small imaginary part is added to the poten-
tial. For more details, see the text.
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FIG. 3. Phonon excitation probabilities starting from the first
three excited initial states. Note the symmetry Pm;0 � P0;m
which can be checked by comparison with Fig. 2. In doing this,
one has to take into account that Ei is the initial kinetic energy
which is total energy minus m 	h! for Pm;0.
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with six energy levels of scattering resonances and may
be considered as the upper six of all together 13 bound-
state levels with up to four excited phonons.

There are three bound states in the Morse potential
with energies E1 � �4:54 meV, E2 � �1:57 meV, and
E3 � �0:14 meV. Hence, there are 12 levels Ei;n �
Ei � n 	h! with i � 1; 2; 3 and n � 0; 1; 2; 3. Four of
these levels are below zero and, hence, cannot be seen
in scattering states; three levels are above zero but below
the one phonon threshold. They lead to elastic scattering
resonances which, however, do not show up in the DWF
since this exhausts the unitarity sum; the five remaining
levels above the one phonon threshold are the ones seen in
Fig. 2 together with the level near 6 meV which disappears
in a four channel calculation but shows up from five
channels on. This indicates a four phonon excitation
superimposed on the ground state of the Morse potential.

It is interesting to note that near the resonances rather
high phonon excitations occur although the average num-
ber of excited phonons is below 0.6 for energies below
12 meV. Obviously, the attractive well assists the excita-
tion of phonons inside the well. On the other hand, outside
the well and near the resonance energies, surprisingly
enough the scattering becomes more elastic (at least for
the first three peaks in DWF). It is also interesting to
mention that these effects do not occur in a classical
trajectory treatment. We will consider such effects in
more detail in a subsequent publication [29].

The three levels in the DWF � 1 region can be seen as
rapid changes in the phase of S0;0 or more directly after
adding a very small imaginary part to the Morse poten-
tial. This leads to a small reduction of the DWF which,
056102-3
however, is strongly enhanced near the resonance ener-
gies. Figure 2 shows the result for an imaginary part of
10�3 of the attractive well of v�z�. It leaves most of the
excitation probabilities practically unchanged but leads to
the surprisingly large dips in the DWF � 1 region, which
we have indicated explicitly in Fig. 2 above.

Of course, all the ‘‘zero order levels’’ described above
are slightly shifted by configuration interactions. These
shifts could, in principle, be determined from a secular
equation for the 13 levels described above neglecting the
coupling to the continuum states. Such calculations will
open up a possibility to determine interaction potentials
in analogy to the procedures using selective adsorption
resonances.

The resonance scattering processes all involve bound
states in the attractive well and, hence, are related to
sticking/desorption processes. Such processes, of course,
require a continuum of phonons and nonzero tempera-
tures and cannot be treated rigorously by CC methods. It
056102-3
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may be interesting, however, to consider an increasing
number Np of coupled phonons and the evolving behavior
of the resonances discussed above as function of Np.

The predicted resonance structures will, of course, be
broadened. Since, however, the observed broadening of
the phonon peaks is only about 2 to 3 times bigger than
the resonance peak width, the broadened peaks will still
be visible. Initial energies of about 6 meV have been used
experimentally. Specular scattering at angles of 45�

would correspond to 3 meV vertical energies which is
low enough to detect all resonances above the single-
phonon threshold.

In an experiment at nonzero temperature, however,
there will be initially excited states which have to be
considered also. Figure 3 shows the transition proba-
bilities Pn;m � jSn;mj

2 starting from the first three excited
states. They exhibit even more pronounced structures
than the Pm;0 and would add on to them. In order not to
mess up the situation too much, it will be desirable to
freeze out excited initial states by using sufficiently low
temperatures. The low energy and low temperature prob-
lems can be facilitated by using argon or krypton over-
layers which have about 2 times bigger vibrational
frequencies [27].

In conclusion, simple model calculations predict new
types of resonances for He scattering by adsorbate over-
layers with unexpected and interesting properties. From
the energetic position of the resonances, the bound state as
well as phonon energies can be determined.

I am grateful to Professor B. Gumhalter for stimulating
discussions and Professor A. Gross for a careful reading
of the manuscript and discussions.
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