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Transition to Instability in a Kicked Bose-Einstein Condensate
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A periodically kicked ring of a Bose-Einstein condensate is considered as a nonlinear generalization
of the quantum kicked rotor. For weak interactions between atoms, periodic motion (antiresonance)
becomes quasiperiodic (quantum beating) but remains stable. There exists a critical strength of
interactions beyond which quasiperiodic motion becomes chaotic, resulting in an instability of the
condensate manifested by exponential growth in the number of noncondensed atoms. Similar behavior
is observed for dynamically localized states (essentially quasiperiodic motions), where stability
remains for weak interactions but is destroyed by strong interactions.
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mean field interaction affect the dynamics of such a points along the ring with an off-resonant laser [3]. The
The classical kicked rotor is a textbook paradigm for
dynamical chaos [1]. The quantum kicked rotor has
played an equally important role for the study of quantum
chaos, for which a wide range of effects have been pre-
dicted [2] and observed in experiments [3]. In recent
years, the realization of Bose-Einstein condensation
(BEC) of dilute gases [4] has opened new opportunities
for studying dynamical systems in the presence of many-
body interactions. A natural question to ask is how the
physics of the quantum kicked rotor is modified by in-
teractions [5].

In the classical regime, chaotic motion leads to diffu-
sive growth in the kinetic energy. In quantum dynamics,
where chaos is no longer possible because of the linearity
of the Schrödinger equation, the motion becomes peri-
odic (antiresonance), quasiperiodic (dynamical localiza-
tion), or resonant (quantum resonance) [6,7]. In the
mean field approximation, many-body interactions in
BEC are represented by adding a nonlinear term in the
Schrödinger equation [8]. This nonlinearity makes it
possible to bring chaos back into the system, leading to
instability (in the sense of exponential sensitivity to
initial conditions) of the condensate wave function [9].
The onset of instability of the condensate can cause rapid
proliferation of thermal particles [10] that can be ob-
served in experiments [11]. It is therefore important to
understand the route to chaos with increasing interac-
tions. This problem has recently been studied for the
kicked BEC in a harmonic oscillator [12].

In this Letter, we investigate the quantum dynamics of
a BEC with repulsive interaction that is confined on a ring
and kicked periodically. This system is a nonlinear gen-
eralization of the quantum kicked rotor. From the point of
view of dynamical theory, the kicked rotor is more
generic than the kicked harmonic oscillator, because it
is a typical low dimensional system that obeys the
Kolmogorov-Arnol’d-Moser theorem [13]. It is very in-
teresting to understand how both quantum mechanics and
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generic system. We focus most of our attention on the
case of antiresonance because it is the simplest periodic
motion. Here we find, with both analytic and numerical
calculations, that weak interactions make the motion
quasiperiodic in the form of quantum beating. For strong
interactions, quasiperiodic motions are destroyed, and we
observe a transition to instability of the BEC that is also
characterized by an exponential growth in the number of
noncondensed atoms. Universal critical behavior for the
transition is found. We have also studied the nonlinear
effect on dynamically localized states that may be re-
garded as quasiperiodic. Similar results are obtained in
that localization remains for sufficiently weak interac-
tions but becomes unstable beyond a critical strength of
interactions.

Consider condensed atoms confined in a toroidal trap of
radius R and thickness r, where r� R so that lateral
motion is negligible and the system is essentially one
dimensional [14]. The dynamics of the BEC is described
by the dimensionless nonlinear Gross-Pitaveskii (GP)
equation,
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where g � 8NaR=r2 is the scaled strength of nonlinear
interaction, N is the number of atoms, a is the s-wave
scattering length, K is the kick strength, 
t�T� representsP
n
�t� nT�, T is the kick period, and � denotes the

azimuthal angle. The length and the energy are measured
in units R and �h2

mR2 , respectively. The wave function  ��; t�
has the normalization

R
2�
0 j j2d� � 1 and satisfies the

periodic boundary condition  ��; t� �  ��� 2�; t�.
Experimentally, the ring-shape potential may be realized
using two 2D circular ‘‘optical billiards’’ with the lateral
dimension being confined by two plane optical billiards
[15]. The 
 kick may be realized by adding potential
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interaction strength g may be adjusted using a magnetic
field-dependent Feshbach resonance [16].

The mean energy of each particle is E�t� �R
2�
0 d� ��� 1

2
@2

@�2
� 1

2gj j
2� . To determine the evolution

of the energy, we numerically integrate Eq. (1) over a time
span of 100 kicks, using a split-operator method [17],
with the initial wave function  being the ground state
 ��; 0� � 1=

�������
2�

p
. The kick period is chosen as T � 2� to

match the condition for antiresonance. After each kick,
the energy E�t� is calculated and plotted as shown in
Fig. 1. We see a remarkable difference among noninter-
action [Fig. 1(a)], weak interaction [Fig. 1(b)], and strong
interaction [Fig. 1(c)] cases. For noninteraction, the en-
ergy E�t� oscillates between two values (antiresonance)
and the period is 2T, while in the weak interaction case,
the amplitude of the oscillation decreases gradually to
zero and then revives, similar to the phenomena of beat-
ing in classical waves. The values of the oscillation and
beat frequencies are obtained by Fourier transform, and
the results are presented in Fig. 2. It is shown that, besides
the appearance of the beat frequency, the interaction also
modifies the oscillation frequency. For a stronger inter-
action [Fig. 1(c)], i.e., g 
 1:96, we find that the energy’s
evolution demonstrates an irregular pattern, clearly in-
dicating the collapse of the quasiperiodic motion and the
occurrence of instability.

For the case of weak interaction, the system is pre-
dominantly in the two energy levels. We can map the
system onto a spin model with a two-mode approximation
to the GP equation [18]. By considering the conservation
of parity we may write the wave function as  �
�1=

�������
2�

p
��a�

���
2

p
b cos��, where the populations a and b

at the ground and excited states satisfy the normalization
condition jaj2 � jbj2 � 1: The Hamiltonian in the spin
representation reads

H � �
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FIG. 1. Plots of average energy E�t� versus the number of
kicks t for three values of g. The kick strength K � 0:8.
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where Sz corresponds to the population difference jaj2 �
jbj2 and arctan�Sy=Sx� gives the relative phase � �
arg�a� � arg�b�. This Hamiltonian is similar to a kicked
top model [19], but here the evolution between two kicks
is more complicated.

With the spin model, we can readily study the dynam-
ics of the system. For the case of noninteraction, the
evolution between two consecutive kicks is simply an
angle � rotation about the z axis. The spin initially
directing to the north pole stays there for time duration
T; then the first kick rotates the spin by an angle

���
2

p
K

about the x axis. The following free evolution rotates the
spin by an angle � about the z axis. Then, the second kick
drives the spin back to the north pole through another
rotation of

���
2

p
K about the x axis. With this the spin’s

motion is a two kick period recurrence and quantum
antiresonance occurs.

With interaction, the motion between two consecutive
kicks is approximately described by a rotation of ��
g�1� 3Sz�=4 about the z axis. Compared with the non-
interaction case, the mean field interaction leads to an
additional phase shift g�1� 3Sz�=4. This phase shift
results in a deviation of the spin from the Sx � 0 plane
at time 2T�, i.e., a moment just before the second kick. As
a result, the second kick cannot drive the spin back to its
initial position and quantum antiresonance is absent.
However, the phase shift will be accumulated in future
evolution and the spin may reach the Sx � 0 plane at a
certain time mT� (beat period) when the total accumu-
lated phase shift is�=2. Then the next kick drives the spin
back to the north pole by applying an angle

���
2

p
K rotation

about the x axis.
The above picture is confirmed by our numerical solu-

tion of the spin Hamiltonian with the fourth-order
Runge-Kutta method [20]. In Fig. 3 we see that the
relative phase (RP) at the moment just before the even
kicks increases almost linearly and reaches 2� in a beat
period. The slope of the increment reads �RP �
���4T�� � ��2T���=2, which can be deduced analyti-
cally. With this and through a lengthy deduction, we
obtain an analytic expression for the beat frequency to
first order in g,
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FIG. 2. Plots of beat and oscillation frequencies versus the
interaction strength (a) and kick strength (b), where the scatters
are the results from the numerical simulation using the GP
equation and lines from analytic expression Eq. (3).
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FIG. 4. (a) Semilog plot of the mean number of noncon-
densed atoms versus the number of kicks t. The thicker lines
are fitting functions. K � 0:8, g � 0:1 (dashed line, fitting
function 0:0003t1:3), g � 1:5 (dotted line, fitting function
0:0011t2), and g � 2:0 [dash-dotted line, fitting function
0:32 exp�0:1t�]. The inset shows the interaction dependence of
the growth rate. The scatters are from numerical simulation and
the solid line is the fitting function 0:33�g� 1:96�1=2. (b) Phase
diagram of the transition to instability.
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FIG. 3. (a) Plots of relative phase versus the number of
kicks t, where g � 0:1 and K � 0:8. (b) Schematic plot of the
phase shift. nT���� represents the moment just before (after)
the nth kick.

FIG. 5. Plots of condensate and noncondensate densities,
where K � 0:8. (a),(b) g � 0:1; (c),(d) g � 2:0.
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This expression as well as the relation between the oscil-
lation frequency and the beat frequency, fosc �

1
2 �

1
2 fbeat,

is in very good agreement with the numerical results as
shown in Fig. 2. Therefore the beating provides a method
to measure the interaction strength in an experiment.

Tuning the interaction strength still larger means en-
hancing further the nonlinearity of the system. From our
general understanding of nonlinear systems, we expect
that the solution will be driven towards chaos, in the sense
of exponential sensitivity to the initial condition and
random evolution in the temporal domain. The latter
character has been clearly displayed by the irregular
pattern of the energy evolution in Fig. 1(c). On the other
hand, the onset of instability (or chaotic motion) of the
condensate is accompanied with the rapid proliferation of
thermal particles. Within the formalism of Castin and
Dum [10], the growth of the number of the noncondensed
atom will be exponential, similar to the exponential
divergence of nearby trajectories in phase space of clas-
sical system. The growth rate of the noncondensed atoms
is similar to the Lyapounov exponent, turning from zero
to nonzero as instability occurs.

In Castin and Dum’s formalism, the mean number of
noncondensed atoms at zero temperature is described by
h
N̂N�t�i �

P
1
k�1hvk�t�jvk�t�i, where jvk�t�i are governed

by

i
d
dt

�
uk
vk

�
�

�
H � gQj j2Q gQ 2Q�

�gQ� �2Q �H � gQ�j j2Q�

��
uk
vk

�
;

(4)

where H � p̂p2

2 � gj j2 �&; & is the chemical potential,
 is the ground state of the GP equation, and the projec-
tion operators Q are given by Q � 1� j ih j.

We numerically integrate Eq. (4) for the uk; vk pairs
over a time span of 100 kicks, using a split-operator
method, parallel to numerical integration of the GP equa-
tion. The initial conditions juk�0�i; jvk�0�i, for the initial
ground state wave function  ��� � 1=

�������
2�

p
, are obtained

by diagonalizing the linear operator in Eq. (4) [21]. After
each kick the mean number of noncondensed atoms is
054101-3
calculated and plotted versus time in Fig. 4(a). We find
that there exists a critical value for the interaction
strength, i.e., gc � 1:96, above which the mean number
of noncondensed atoms increases exponentially, indicat-
ing the instability of BEC. Below the critical point, the
mean number of noncondensed atoms increases polyno-
mially. As the nonlinear parameter crosses over the criti-
cal point, the growth rate turns from zero to nonzero,
following a square-root law [inset in Fig. 4(a)]. This
scaling law may be universal for Bogoliubov excitation
as confirmed by recent experiments [11].

The critical value of the interaction strength depends
on the kick strength. For very small kick strength, the
critical interaction is expected to be large, because the
ground state of the ring-shape BEC with repulsive inter-
action is dynamically stable [22]. For large kick strength,
to induce chaos, the interaction strength must be large
enough to compete with the external kick potential. So, in
the parameter plane of �g; k�, the boundary of instability
shows a ‘‘U’’ type curve [Fig. 4(b)].
054101-3
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FIG. 6. Nonlinear effects on dynamically localized states.
K � 5 and T � 1. (a) Plots of average energy E�t� versus the
number of kicks t, where the dash-dotted line corresponds to
the classical diffusion. g � 0 (dashed line), g � 1 (dotted
line), and g � 5 (solid line). (b) Semilog plot of the mean
number of noncondensed atoms versus the number of kicks t.
g � 1 (dotted line) and g � 5 (solid line).
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Across the critical point, the density profiles of both
condensed and noncondensed atoms change dramatically.
In Fig. 5, we plot the temporal evolution of the density
distributions of condensed atoms as well as noncondensed
atoms. In the stable regime, the condensate density oscil-
lates regularly with time and shows a clear beating pat-
tern [Fig. 5(a)], whereas the density of the noncondensed
atoms grows slowly and shows main peaks around � �
�� and 0, besides some small oscillations [Fig. 5(b)].
In the unstable regime, the temporal oscillation of the
condensate density is irregular [Fig. 5(c)], whereas the
density of noncondensed atoms grows explosively with
the main concentration peaks at � � ��=2 where the
gradient density of the condensed part is maximum
[Fig. 5(d)]. Moreover, our numerical explorations show
that the cos2� mode [Fig. 5(b)] dominates the density
distribution of the noncondensed atoms as the interaction
strength is less than 1.8. Thereafter, the sin2�mode grows
while cos2� mode decays, and finally the sin2� mode
becomes dominating in the density distribution of non-
condensed atoms above the transition point [Fig. 5(d)].
Since the density distribution can be measured in experi-
ment, this effect can be used to identify the transition to
instability.

Finally, although the above discussions have been fo-
cused on a periodic state of antiresonance, the transition
to instability due to strong interactions also follows a
similar path for a dynamically localized state [23]. The
only difference is that we start out with a quasiperiodic
rather than a periodic motion in the absence of interac-
tion. This means that it will generally be easier to induce
instability but still requires a finite strength of interaction.
In Fig. 6, we show the nonlinear effect on a dynamically
localized state atK � 5 and T � 1. For weak interactions
(g � 1) the motion is quasiperiodic with slow growth in
the number of noncondensed atoms. Strong interaction
(g � 5) destroys the quasiperiodic motion and leads to
diffusive growth of energy, accompanied with exponen-
tial growth of noncondensed atoms that clearly indicates
the instability of the BEC. Notice that the rate of growth
054101-4
in energy is much slower than the classical diffusion rate,
which means that chaos brought back by interaction in
this quantum system is still much weaker than pure
classical chaos.
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