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Threshold Vibrational Excitation of CO2 by Slow Electrons
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Threshold structures, reminiscent of those seen in the polar hydrogen halides, have recently been
observed in the cross sections for electron impact excitation of certain vibrational levels of the nonpolar
CO2 molecule. These structures occur at energies outside the range where shape resonances dominate
the dynamics. We propose a virtual state model that describes the multidimensional nuclear dynamics
during the collision and explains quantitatively the selectivity observed in the excitation of the Fermi
dyad, as well as the pattern of threshold peaks and oscillations seen in the upper levels of the higher
polyads.
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there is not only structure, but also selectivity in these
excitation cross sections. For the Fermi dyad, Allan’s [5]

by McCurdy et al. [11], only the features in cross
sections above 1.5 eV can accuratly be predicted through
For certain molecules, the cross sections for electrons
exciting vibrations at very low energies can deviate mark-
edly from the behavior predicted by simple threshold
laws, displaying pronounced structures within a few
tenths of an electron volt (eV) of threshold. Rohr and
Linder [1] first observed such structures some 25 years
ago in the hydrogen halides (HF, HCl, and HBr) and
initiated a period of intense experimental and theoretical
activity that has continued to the present [2,3]. Of the
various factors that come into play in these systems, an
essential component seems to be the fact that, for very
low-energy collisions, the target provides the electron
with a potential well that is on the verge of binding an
extra electron. Small displacements of the nuclei away
from equilibrium can cause the composite electron �
target system to shift from being a bound state to an
unbound ‘‘virtual state’’ [4], leading to strong coupling
between electronic and nuclear motion. Much of the work
in this area has been focused on the hydrogen halides—
systems with only one nuclear degree of freedom. Recent
experiments by Allan [5,6] have revealed interesting
polyatomic effects in the threshold vibrational excitation
cross sections for nonpolar targets such as CO2 and CS2.

The principal features of e-CO2 scattering have been
known for decades. Peculiarities in the threshold vibra-
tional excitation cross sections were first observed in 1985
[7]; the suggestion of a virtual state being responsible for
the low-energy enhancement of the cross sections came
even earlier [8]. In these early studies, the target vibra-
tional levels were described in terms of uncoupled normal
modes. But an accidental degeneracy between one quan-
tum of symmetric stretch and two quanta of bend invalid-
ates this simple picture since it leads to a strong mixing of
the zeroth order levels (or so-called polyads) known as
‘‘Fermi resonance’’ [9]. With a decisive improvement in
energy resolution, Allan has been able to measure exci-
tation cross sections for individual components of the
polyads in CO2; he makes the striking observation that
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measurements reveal that one component displays a pro-
nounced threshold peak while the other level has a van-
ishingly small cross section at low energy. Allan also
observed a pattern of threshold peaks and oscillatory
structure in the upper levels of the higher polyads. Both
observations have yet to be explained. Our purpose here is
to describe a theoretical model that provides a quantita-
tively accurate description of this data.

The principal assumption of our treatment is that, for
very small electron energies, the excitation cross sections
are entirely determined by the Born-Oppenheimer po-
tential surface of the molecular anion and its analytic
continuation to geometries where it is unbound. For ge-
ometries where the anion is electronically bound relative
to the neutral, we can use electronic structure methods to
compute the relevant energy surfaces. We have restricted
our investigation to C2v geometries where both CO bond
distances are equal and the O-C-O angle is allowed to
vary, i.e., we ignore asymmetric stretch motion.

Neutral CO2 is linear at equilibrium (with a CO bond
distance of 2:2 bohrs) while CO�

2 is correspondingly un-
bound at the same geometry. If we stretch the CO bonds,
keeping the atoms collinear, the anion becomes bound for
CO distances greater than �2:55 bohrs [10], correlating
with the CO� O� dissociation limit. It is easy to see that
there must be two quasidegenerate anion states at these
stretched, linear geometries. O� has the configuration 2P
and CO is a closed shell. There are thus two anion states,
of 2� and 2
 symmetry, corresponding to configurations
where the O� p-shell vacancy is aligned either perpen-
dicular or parallel to the CO axis, respectively. As the CO
bonds are compressed, these states move apart and even-
tually become unbound: the 2� state moves up into the
continuum relative to CO2 and becomes the 3.8 eV shape
resonance, while the 2
 state becomes a virtual state.

It is now established that the 2�u CO
�
2 shape reso-

nance, near 3.8 eV, is not involved in the threshold
regions. It is too high in energy and, as recently shown
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FIG. 1. Cuts through the potential surfaces of CO2 and CO�
2

where the O-C-O angle �, in degrees, is varied and the C-O
bond distance is fixed at 2.2 bohrs. In the crossing region,
around �o, the difference between the curves follows a thresh-
old law predicted by the dipole moment of CO2. This law
allows us to analytically continue the CO�

2 potential into
configurations where it is unbound, denoted by dashed curves,
and construct a complete surface for the CO�

2 virtual state.
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multidimensional ‘‘boomerang’’ dynamics on the 2A1 and
2B1 components of the 2�u shape resonance that are
coupled through Renner-Teller effects. But below those
energies, the boomerang model does not accurately de-
scribe the excitation cross sections. It is the virtual state,
defined by analytic continuation of the bound CO�

2
2


state, that determines the threshold nuclear excitation
dynamics.

If we bend the CO2 molecule, it acquires a dipole
moment which increases its electron affinity. In her
1998 study, Morgan [12] showed how the virtual state
of CO�

2 evolved into a 2A1 bound anion as the molecule
was bent, with the CO bond distances fixed. As the OCO
angle changes from 180� to 145�, the virtual state, which
starts on the negative imaginary axis of the complex
momentum (K) plane, moves off the axis and approaches
the origin on a curved trajectory that has a kink at K � 0,
where the anion becomes bound. More recently, Som-
merfeld [13] reported another cut through the CO�

2 sur-
face in C2v symmetry, along a vector connecting the
minimum on the anion surface (at a CO distance of
2.3 bohrs and O-C-O angle of 138�) with the equilibrium
geometry of the neutral. He found that the CO�

2 curve
exhibits a barrier between 150� and 155� just before it
crosses the neutral curve. Sommerfeld did not attempt
to characterize the anion curve after it crossed the
neutral curve.

We need a strategy to construct a complete 2A1 anion
surface in C2v geometry. So calulations were carried out
on the neutral molecule using the coupled-cluster method
to determine the ground state potential surface and the
dipole moment function for a range of CO bond distances
and O-C-O angles in C2v geometry. We then carried out
coupled-cluster calculations for the 2A1 anion surface at
corresponding geometries where it is electronically
bound. From these calculations, we can characterize the
‘‘seam,’’ as a function of O-C-O angle (�) and CO bond
distance (R), where the neutral and anion surfaces inter-
sect. We denote the values of R and � along the seam as
(Ro;�o). To analytically continue the anion surface be-
yond this seam, we begin by writing Vion�R;�� �
Vneutral�R;�� �

1
2K

2�R;��. We can think of K�R;�� as
the (complex) momentum of the electron in the negative
ion. Where the ion is bound, K is a positive imaginary
number. It moves into the lower half-plane when the anion
is unbound. The topology of the complex surface,
K�R;��, near K � 0 is determined by the behavior of
the electron-molecule interaction at large distances, i.e.,
by the dipole moment of the neutral, which depends on R
and�. Where the dipole vanishes, quadrapole and polar-
ization interactions could slightly modify the behavior of
K, but this would only effect the complex portion of the
anion surface at linear geometry.

The binding properties of a fixed dipole potential are
well known and have been studied by a number of au-
thors. We follow the treatment of Lévy-Leblond [14]. The
Schrödinger equation for an electron in a dipole field is
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separable in polar coordinates. For small dipole moments,
which is the case we have here, only the lowest (nodeless)
angular mode gives rise to an attractive centrifugal po-
tential. The effective angular momentum, l, of the elec-
tron in this mode is a negative real number between � 1

2
and zero which depends on the value of the dipole mo-
ment, D. The relationship between l and D was given by
Lévy-Leblond as a power series, l�l� 1� � 2D�R;��2=
3� . . . . To determine K, we need to examine the Jost
function, F l�K�, for this dipole problem and determine
the values of K for which the Jost function vanishes. This
problem is discussed by Newton [4].

Along the seam (Ro;�o),K is zero. Following Newton,
we expand the Jost function around K � 0 as F l�K� �
a0 � a2K

2 � � � � � ib1K
2l�1 � � � � . The a and b coeffi-

cients, which depend on nuclear geometry, are also ex-
panded about (Ro;�o). Keeping only terms through first
order, we can characterize K in the vicinity of the cross-
ing as

K�R;�� � i	��R� Ro� � �����o�

1=	2l�R ;���1
; (1)

where � and � are constants. l�R;�� is related to
D�R;��, by Lévy-Leblond’s power series. The only un-
knowns are the constants� and� and these are chosen so
as to give a smooth connection between the inner and
outer portions of the anion surface. We have thus used the
analytic properties of the dipole potential to connect the
complex part of the anion surface to the real part that was
determined ab initio. Figure 1 shows a cut through our
calculated neutral and anion surfaces at a fixed CO bond
distance. Since the molecule is slightly bent in the cross-
ing region, and therefore has a weak dipole moment, the
exponent in Eq. (1) is noninteger and the CO�

2 surface
becomes complex as soon as ����o� switches sign.
These independently computed potential surfaces are
053201-2



FIG. 2. Excitation cross sections for the Fermi polyads in
CO2. Solid lines: theory; dashed lines: experiment (Refs. [5,6]).
Top panel: dyad; bottom panel: triad, tetrad, and pentad.
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consistent with both Morgan’s [12] and Sommerfeld’s
[13] calculations.

Having constructed an anion potential surface, we
need a dynamical equation to describe the nuclear motion
and to evaluate the vibrational excitation cross sections.
The zero-range potential model of Gauyacq and Her-
zenberg [15] is our starting point for developing a nuclear
wave equation. The basic assumption of the model is that,
at very low energies, the wave function that describes the
scattered electron is independent of energy inside some
radius ro. Inside this radius, the potential is strong and the
electron follows the nuclei adiabatically. The logarithmic
derivative of the wave function , f�R;�� � 	@ �r;R;
��=@r
= �r;R;��, at r � ro is introduced to avoid cal-
culations in the inner region. The fact that there is a zero
in the Jost function close to the origin means that the
wave function inside ro can be equated with a purely
outgoing wave (Siegert state) of the form  �r ;R;�� �
exp	iK�R;��r� l�R;���=2
 [15]. It follows that
f�R;�� � iK�R;��.

Asymptotically, where the scattered electron is outside
the molecule, we can express its wave function, using
S-matrix boundary conditions, as

 �r ;R;�� �
r!1

h�l �k0r��0�R;�� �
X

n

Anh�l �knr��n�R;��;

(2)

where the �n�R;��’s, with energies En, are the vibra-
tional states of neutral CO2 and h���� is an outgoing
(incoming) Hankel function. The channel momenta, kn
must satisfy kn �

����������������������
2�E� En�

p
to ensure energy conser-

vation. For energetically open channels, the An are related
to vibrational excitation cross sections by

 0n �
�

k20

kn
k0

jAnj2; if E > En: (3)

The next step is to equate the log derivative of  ,
evaluated using Eq. (2) at ro, with iK�R;��. The match-
ing condition can be converted to a system of linear
equations by using an expansion in target vibrational
states and integrating over their internal coordinates. If
one further assumes that ro can be chosen large enough so
that the Hankel functions can be replaced by their asymp-
totic forms, then it is easily shown that the matching
equations become independent of ro [16]. Gauyacq and
Herzenberg [15] used this line of reasoning some time
ago, treating K as an empirical parameter adjusted to fit
experiment, to model the threshold vibrational structures
seen in e� � HCl scattering. Their procedure can diverge
at certain collision energies unless continuum target
states are included in the expansion and, in any case, is
not practical for polyatomic molecules. The matching
condition, as we have recently shown [17], can be reor-
ganized into an equivalent differential equation. More-
over, our analytic continuation procedure for constructing
the complete anion surface obviates the need for treating
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K�R;�� empirically. The key to the derivation, which is
detailed in Ref. [17], is to begin with the matching con-
dition and to use the operator identity kn�n �������������������������������
2�E�Hneutral�

p
�n. There we show that by definingP

nAne
i�kn�k0�r0�n � �K �

������������������������������
2�E�Hneutral�

p
� , one can

derive the equation:

f2�E�Hion� � 	
������������������������������
2�E�Hneutral�

p
; K�R;��
g 

� 	K�R;�� � k0
�0: (4)

Since the variation of K with geometry is significant,
especially in the vicinity of the crossing seam between
neutral molecule and anion, the commutator in Eq. (4) is
nonnegligible and carries significant nonlocal effects.

We solved Eq. (4) in normal coordinates using a two-
dimensional discrete variable representation (DVR) of the
nuclear wave equation, as outlined in Ref. [11]. The
operator

������������������������������
2�E�Hneutral�

p
was represented in terms of

the matrix eigenvalues and eigenvectors of Hneutral in the
finite DVR basis [17]. The excitation amplitudes An are
obtained as An � h�njK � knj i and the cross sections
are evaluated using Eq. (3). We show the resulting vibra-
tional excitation cross sections in Fig. 2.

The selectivity seen in the excitation cross sections for
the two components of the dyad is the result of two
effects. First, there is the complex part of the 2A1 surface
that forces to decay in regions where the magnitude of
053201-3



FIG. 3. Contour plots of the wave functions for the two
components of the Fermi dyad in O-C-O angle, in degrees,
and C-O bond distance, in bohrs. The thick line marks the seam
where the anion and neutral surfaces cross. The imaginary part
of the anion surface is zero above the seam and increases
proportionately in regions indicated by the shading. Top panel:
upper member of dyad; bottom panel: lower member of dyad.
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the imaginary part of the energy is large. As we see in
Fig. 3, the complex part of the CO�

2 surface is large for
small C-O bond lengths and slightly bent geometries. The
lower member of the dyad, shown in the bottom panel of
the figure, has a significant probability in this shaded
region, while the upper member, plotted in the top panel,
has a smaller overlap. This results in a larger cross section
for the upper member. More important in determining the
selectivity, however, is the commutator in Eq. (4). As
discussed earlier, that term is most important in the
crossing region. The upper member of the dyad comes
closer to the crossing region and, therefore, has a much
bigger interaction with the electronic motion.

The same effects come into play in the cross sections
for excitation to the higher polyads. In the triad, for
example, only the upper member has significant proba-
bility close to the crossing seam and, consequently, its
cross section is greatly enhanced versus the other vibra-
tions of the triad. As we increase the electron energy and
excite states higher up in the CO2 vibrational spectrum,
the temporary negative ion probes larger portions of the
2A1 surface, including regions where the anion state is
053201-4
bound relative to the neutral. Almost all the members of
the polyads now cross the seam and the selectivity be-
tween them is not as pronounced. However, nuclear
motion is so strongly coupled to the electronic motion at
the seam, that the dynamics near the seam is sensitive to
the opening of new vibrational channels. This effect
appears in the theoretical and experimental cross sections
of the top members of the triad, tetrad and pentad shown
in Fig. 2. The opening of a new channel eats a hole in
the cross sections of vibrational channels that were al-
ready open.

In summary, we have shown how a simple threshold
law describes the 2A1 electronic surface of the virtual
state. Only two-dimensional dynamics that include non-
Born-Oppenheimer effects on this surface can predict the
selectivity and the oscillating structures seen in the ex-
periment. Slow electrons interact strongly with vibra-
tional states that probe configurations where the CO2
and CO�

2 potential curves cross.
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