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The information contained in galactic rotation curves is examined under a minimal set of
assumptions. If emission occurs from stable circular geodesic orbits of a static spherically symmetric
field, with information propagated to us along null geodesics, observed rotation curves determine
galactic potentials without specific reference to any metric theory of gravity. Given the potential, the
gravitational mass can be obtained by way of an anisotropy function of this field. The gravitational
mass and anisotropy function can be solved simultaneously in a Newtonian limit without specifying
any specific source. This procedure, based on a minimal set of assumptions, puts very strong constraints

on any model of the “dark matter.”
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There now seems to be a widespread belief that “dark
matter” is a major constituent of our Universe [1].
Whereas the need for dark matter in some galactic halos
has a long history [2], it is fair to say that at present we
are quite far away from a universally accepted solution to
the dark matter problem. Indeed, empirically motivated
modifications of Newtonian dynamics have been devel-
oped as an alternative to dark matter [3]. Despite the
profound implications of the problem, it is essentially
trivial to understand. Assuming the nonrelativistic
Doppler effect and emission from stable circular orbits
in a Newtonian gravitational field, it follows that V? «
[M(r)]/r, where V is the orbital speed and M(r) is the
dynamical mass. Since V? levels off at large r for many
galactic halos, M must continue to grow similar to r.
Since in many cases the observed galactic components do
not produce this growth, what unseen material does?

The approach used here breaks the problem down into
three steps: (i) the determination of the galactic potential;
(i1) the construction of the effective gravitational mass
from this potential with the aide of an anisotropy func-
tion; (iii) the simultaneous solution of the effective grav-
itational mass and the anisotropy function. Here we
completely solve steps (i) and (ii) for all metric-type
theories of gravity under a minimal set of assumptions.
Assuming only that emission occurs from stable timelike
circular geodesic orbits in a static spherically symmetric
metric with information propagated to us along null geo-
desics, it is shown that the potential follows directly from
observed galactic rotation curves without any specific
reference to a theory of gravity. Further, without specify-
ing any model of the background, the introduction of an
anisotropy function allows the determination of the ef-
fective gravitational mass without using Einstein’s equa-
tions. Step (iii) is completed with the aide of a Newtonian
limit and the nonrelativistic Doppler effect. This last step
makes it clear that the dynamical mass M is not the
effective gravitational mass against which observed ga-
lactic components should be compared to see if indeed
any mass is ‘“‘missing” [4].

051101-1 0031-9007/04/92(5)/051101(4)$22.50

PACS numbers: 04.20.Cv, 95.35.4d, 98.62.Gq

First, we construct stable circular timelike geodesic
orbits in a static spherically symmetric field. In terms of
“curvature’” coordinates, the field takes the form [5]

dr?
1 — 20

r

ds* = +r2d0? — &2*0dr, (1

where dQ? is the metric of a unit sphere. The use of
curvature coordinates plays no essential role in what
follows as it provides merely a basis for calculation.
Throughout we refer to the function ®(r) as the “poten-
tial” and m(r) [ # M(r)] as the effective gravitational
mass. A central point of this analysis is the fact that
this potential can be obtained without knowledge of
m(r). It is immediately clear from (1) that all geodesic
orbits are stably planar (say # = 7/2) and have two
constants of motion, the “energy” y = ¢2*"i and “an-
gular momentum” [ = r2q§ [6]. In the timelike case then

F2f(r) + V(r) = 2, (2
where
e2<1>(r)
f(") = m, 3)
and
2
V(r) = ez‘b(’)(l + %) “4)

Setting 7 = # = 0, r > 0, it follows from the timelike
geodesic equations that [7]
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and

| = N Vrd’ (6)
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where the time orientation has been chosen so that y > 0
and all particles are assumed to rotate in the same sense
with ¢ chosen so that [ > 0. Note that the existence of
these circular orbits requires

0<rd < 1. )

Next, we require that the timelike circular geodesics be
stable. Let r be a circular orbit and consider r = ry + &,
where 8 < r,. Taking expansions of V() and f(r) about
r = ry, it follows from (2) that
Vi) 5 _
2f(ro)
so that V"(ry) >0 for stability. [The requirement
V'(ry) = 0 merely reproduces (6)]. From (4) then

30 + r®" > 2r(D)? 9

5+ 0, (8)

for stable circular orbits, a refinement of the Newtonian

condition 3®’ + r®"” > 0 for conservative central fields.
Under the assumption that information travels to us

along null geodesics, it follows, without further assump-

tion, that [8]

/\0 (uaka)e

14+z=-—"> ,
e (ugk®),

(10)

where A is the wavelength, e stands for the emitter, o for
the observer, u, is the timelike four tangent, and k% is
tangent to the null geodesic (N) connecting e and o. The
emitter is assumed to be on a stable circular timelike
geodesic in (1). Along N, define

b

l—N. 11
YN

The constant yy is positive by construction but [, is both
positive and negative. The observer is taken to be a static
observer at infinity (u2 = e~ ®()§%). Specifically, we
assume that ®(c0) — C where C is a finite constant which
we can set to zero without loss in generality. [The “fit-
ting” problem associated with the assumption that ®(oo)
is finite is discussed briefly below.] Then b represents the
impact parameter at infinity. That is, |b| gives the ob-
served radial distance on either side of the observed
center (b = 0). The construction of a mapping b(r) (the
mapping between the observer and coordinate planes) is
an important part of this analysis. Evaluation of (10) now
gives

1 <1 _\/rCID’elb|>

where € = *1. Rather than (12), we consider shifts on
either side of the central value (b = 0) [9]

1
V1 — @

1+z.= 12)

eq’ r

1+z. = (13)
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Defining
Z=2zy—2,=2.— 27, (14)
we have
/b2
2 —
z r(l1 — rd®’)’ (15

We now construct the mapping b(r). At fixed b (that is,
at a fixed offset from the observed center of the galaxy),
choose the maximum observed value of Z. From (15) it
follows that, if ®'/[r(1 — rd’)] is monotone decreasing
with increasing r, then the maximum observed value of Z
corresponds to the minimum value of r along N. This
minimum value follows from the null geodesic equation
and is given by

2

, T
b = eI (16)

The monotone requirement gives us
O > r®" + 2r(P')2. (17)

With this restriction the mapping b(r) is given by (16). A
derivation of (15) with (16) assumed and without the
considerations leading to (17) has been given by
Nucamendi, Salgado, and Sudarsky [4].

Observations of galactic rotation curves are reported by
way of the “optical convention”

)‘0 - )‘e
A,

(18)

v

so that
Z=vb)—vb=0) (19)

with Z given by (15) subject to the mapping (16). It is
important to note that no “velocity” has entered the
procedure. Whereas it has become customary to decom-
pose galactic potentials into various parts [10—12], such
decompositions insert further assumptions. We continue
here with the full function ® taken as given directly from
the observations assuming only that v is corrected for all
systematic effects and reflects an intrinsic property of the
galaxy alone.

We now seek information on the function m. On the
basis of the Lovelock theorem [13], we know that proper-
ties of the Einstein tensor are of central importance (even
without invoking Einstein’s equations). Indeed, for spaces
of the form (1), the entire structure of the space can be
specified by a single “anisotropy” function

H =G) -Gy, (20)

where G? is the Einstein tensor. It follows that [14]

o — fbef“drdr+ C
efadr ’

21
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where

27 @7 4 (D] - 3rd’ - 3
a= r(r® + 1) ’ (22)

and

r{{®" + (&) — H]— @}
rd’ + 1 ’
with C a constant. Under the assumption of spatial iso-
tropy (H = 0) m is determined, up to quadrature, know-
ing @' and ®”. Moreover, any function m can be
generated by a suitable choice for . However, m and
H cannot be determined simultaneously without further
assumptions. Whereas it is a straightforward matter to
specify JH via a specific decomposition of the energy-
momentum tensor (and many recent papers do exactly
this), such a procedure is not unique in the sense that the
same function JH is derivable from inequivalent decom-
positions. We proceed here in a different way by invoking
an assumption based on a Newtonian limit.
To place the foregoing analysis in Newtonian terms, we
introduce a potential ® defined by

V2) = —R, (24)

b= (23)

where R is the time component of the Ricci tensor of (1)
[15]. In the usual way, we find that ® satisfies

~ A r 1 r
¢/=ﬂ2——r+i]<r®’—ﬂ>dr+7] rPH dr,
r r* Jo

r 3 )
(25)

where we have set r > 2m and introduced the cosmo-
logical constant A. The dynamical mass is defined by
M = r*»®' and the balance of Newtonian forces for cir-
cular motion gives

M = rV?, (26)

where V is the orbital speed. If the frequency shift is
assumed to be due to the nonrelativistic Doppler effect,
then V = v and, since v is known, ®' is known and we
now have two equations, (25) and (21), from which we
determine a solution (m,J{ ). Note that no decomposition
of any energy-momentum tensor has been used.

Let us now define the energy density 87p = —G! so
that

m = fr 477'er dr 27)
0
just as in Newtonian mechanics (though there p stands
for the mass density). Equation (25) now provides the link
between the dynamical mass M and the density p. The
traditional ““missing mass” problem derives from the fact
that, since v? levels off at larger values of r for many
galactic halos, assuming V = v then according to (26) M
must continue to grow in that region like r. Assuming
M = m, it then follows from (27) that there must be
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unseen material if the inclusion of all observed contribu-
tions to p does not produce this continued growth.
However, M # m, and it is possible that the observed
contributions to p are compatible with m while M con-
tinues to grow like 7 according to (25). In this sense, there
would be no mass missing at all. Mass should be consid-
ered missing when all observed contributions to p are
incompatible with m, not M, and such an incompatibility
could arise whether or not v? levels off.

The fitting problem involves the smooth junction of (1)
at a finite value of r (say R) onto an external field in which
we can set ®(o0) = 0. This boundary condition is re-
quired by the definition of » and by the fact that the
rotation curves are considered intrinsic (corrected for
all other effects). Geometrically this junction is examined
by way of the Darmois-Israel conditions [16]. The smooth
junction of metrics of the form (1) requires only the
continuity of m and ®’, assuming the continuity of r, 6,
and ¢, so that G7, but not Gz nor Gi, is necessarily
continuous at R. In general relativity, if the external field
is taken as vacuum then in a suitable gauge ¢’ =1 —
2m(R)/r — Ar?/3 and so ®(o0) = 0 only for A = 0.

In summary, assuming only that emission occurs from
stable timelike circular geodesic orbits in a static spheri-
cally symmetric metric with information propagated to
us along null geodesics, it has been shown that galactic
potentials follow directly from the observed rotation
curves via the relation Z> = v?> where, subject to the
mapping (16), Z? is given by (15). Neither the gravita-
tional mass m nor any metric theory of gravity enters this
determination of the potential ® but ® must satisfy (7),
(9), and (17). Next, in terms of a single anisotropy func-
tion [H given by (20)] m follows directly from ®. Both
m and HH can be solved, without using any specific
decomposition of the energy-momentum tensor, by con-
structing a Newtonian limit and by now assuming that
the frequency shift is due to the nonrelativistic Doppler
effect. This procedure naturally defines a dynamical
mass M # m with respect to which the missing mass
problem is usually defined. With @, H, and m deter-
mined, the dark matter, should it be required, is highly
constrained, but not identified since the same function
is derivable from inequivalent decompositions of the
energy-momentum tensor.
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2
20

.
Ca”PW() - B’

e (29)
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distinct from packages distributed with MAPLE and must
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documentation is distributed freely on the World Wide
Web from the address http://grtensor.org
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