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Commensurate Two-Component Bosons in an Optical Lattice: Ground State Phase Diagram
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Two sorts of bosons in an optical lattice at commensurate filling factors can form five stable super-
fluid and insulating ground states with rich and nontrivial phase diagram. The structure of the ground
state diagram is established by mapping a d-dimensional quantum system onto a �d� 1�-dimensional
classical loop-current model and Monte Carlo (MC) simulations of the latter. Surprisingly, the quantum
phase diagram features, besides second-order lines, first-order transitions and two multicritical points.
We explain why first-order transitions are generic for models with pairing interactions using micro-
scopic and mean-field (MF) arguments. In some cases, the MC results strongly deviate from the MF
predictions.
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This conclusion is disappointing considering predictions
of other strongly correlated superfluid ground states for
two-component inconvertible bosons: a paired superfluid

I-order transition is generic for models with pairing
interactions, and we show that MI ground states may be
further classified in terms of their excitation spectrum.
Ultracold atoms trapped in an optical lattice (OL) [1,2]
form an intriguing strongly correlated quantum system.
The unprecedented control over parameters of the effec-
tive Hubbard-type Hamiltonian renders this system an
important object for the study of quantum phase transi-
tions [3]. Single-component bosons without internal de-
grees of freedom have only two phases in a regular
lattice: superfluid (SF) and Mott insulator (MI) (at com-
mensurate filling factor [4]). When several bosonic spe-
cies are combined in the OL, the naive expectation that
their ground states are straightforward mixtures of MI
and SF with respect to participating components is
wrong — the phases of spinor and multicomponent sys-
tems are far more subtle [5–10].

In this Letter, we study a commensurate two-
component bosonic system described by the on-site
Hubbard Hamiltonian:

H � �
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U��0ni�ni�0 : (1)

Here ayi� creates a boson of the sort � � A;B on site i,
ni� � ayi�ai�, and hiji denotes pairs of nearest-neighbor
sites. In what follows, we consider only equal filling
factors of the components, nA � nB � n, with n integer,
and, for brevity, denote UAB � �V, U�� � U�. A simi-
lar (incommensurate) two-species bosonic model has
been studied recently to look at the differences with the
fermionic Hubbard model [11].

At double commensurate filling, recent mean-field
analysis of the model (1) in [12] failed to reveal phases
and, correspondingly, phase transitions which cannot be
reduced to simple mixtures of single-component states.
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vacuum (PSF), which is equivalent to the superfluid state
of diatomic molecules and to a BCS superconductor
[6,7,9,13]; and a super-counter-fluid (SCF), in which the
net atomic superfluid current is zero, and yet the equal
currents of the components in opposite directions are
superfluid [8,13].

In this Letter, we perform Monte Carlo (MC) simula-
tions of the �d� 1�-dimensional classical analog of the
on-site Hubbard model (1) and find five stable superfluid
and insulating phases: (i) MI, (ii) MI of sort A and SF of
sort B (MIB�SFA) and itsA $ B analog, (iii) SF of sort A
and SF of sort B (2SF), (iv) PSF, and (v) SCF. An inter-
acting mixture of two mutually penetrable superfluids
(2SF) exists even without the optical lattice and corre-
sponds to the t� U�;�0 limit. This state has two nonzero
complex order parameters h Ai and h Bi. By increasing
either UB or UA one drives the corresponding component
from the superfluid to the Mott-insulating state; accord-
ingly, in MIB�SFA we have finite h Ai, and zero h Bi.
When both UA and UB are strong, the ground state is MI
with all order parameters being zero. Our proof then
concerns the existence of PSF and SCF phases; in both
phases h Ai � h Bi � 0, while �PSF � h A Bi � 0 in
PSF, and �SCF � h A 

y
Bi � 0 in SCF. It is worth noting

that, while the PSF, representing atomic A� B pairing,
requires V > 0, the SCF describes pairing of particles A
and holes B and occurs when V < 0.

The most surprising MC result is that the 2SF-MI tran-
sition may be of I order. This result also follows from the
mean-field (MF) analysis of the problem along the lines
suggested in [3] for the single-component case. Finally,
we develop microscopic arguments explaining why the
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To prove that possible ground states of Eq. (1) include
PSF, we assume the interexchange symmetry A$ B, im-
plying tA � tB � t and UA � UB � U and consider the
limit described by two strong inequalities: t=U � 1 and
�=U � 1, with � � U� V (here V > 0 and � > 0; at
� < 0 the system collapses). Then, the effective low-
energy Hilbert space is determined by states were on each
site niA � niB; these are separated from other states by a
large pair-breaking gap  U. We thus naturally arrive at
the description in terms of pairs. In the second-order
perturbation theory in t=U (cf., e.g., [8]) the dynamics
of pairs is given by the effective Hamiltonian (we omit
terms proportional to the total number of particles):

Hp � �~tt
X

hiji

��O�
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�
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Here mi are pair occupation numbers, the raising operator
O�
i is defined by hm0

ijO
�
i jmii � �mi � 1��m0

i;mi�1, O�
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i �

y, and ~tt � 2t2=U. In contrast to the standard single-
boson hopping that scales linearly with the typical oc-
cupation number the hopping amplitude for pairs is
quadratic in mi. If potential energy terms in Eq. (2)
were omitted, the ground state would collapse to a droplet
with the diameter comparable to the lattice constant. The
second term in the brackets, Eq. (2), describes nearest-
neighbor attraction and further enhances collapse insta-
bility. A stable ground state arises only when the on-site
repulsion � is strong enough. On the other hand, at very
large � the commensurate ground state is MI. The ques-
tion is then whether for some ~tt=�, the ground state is PSF
rather than MI or collapsed. The positive answer is read-
ily seen in the limit of a very large molecular filling factor
m � n=2 � 1. In the region ~tt� �� m2~tt the system is
stable against collapse; the nearest-neighbor attraction is
negligible. Since the maximum insulating gap �� does
not depend on m [4], we conclude that for � <m2~tt the
ground state must be superfluid. (Using mapping to the
quantum rotor model [3] we know, in fact, that the MI
state requires � > m2~tt.) Finally, for m � 1 we have per-
formed quantum MC simulations of Eq. (2) in d � 2 and
found that at � � 10~tt the ground state is superfluid.

Similarly, the existence of the SCF phase can be shown
in the limit t=U � 1 and j~��j=U � 1 (where ~�� � U� V
and V is negative) studied in Ref. [8]. The effective
Hamiltonian can be now written in terms of the spin-S �
�nA � nB�=2 operators, HS � �~tt

P
hiji SiSj � ~��

P
i�Siz�

2,
which for small positive ~�� has the easy-plane ferromag-
netic ground state, or SCF [8]. Furthermore, one can show
that PSF and SCF are qualitatively similar and SCF may
be viewed as the result of pairing between particles of one
component and holes of another [13]. Because of this
equivalence, we discuss below only the V > 0 case, that
is, the case of the PSF.

To reveal the global structure of the phase diagram we
performed Monte Carlo simulations for the �d� 1�-
dimensional classical analog of the bosonic Hubbard
model. The so-called J-current model [14] is built on
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particle world lines (space-time currents) in discrete
imaginary time, and we straightforwardly generalize it
to the two-component case:

S �
X

�;�0

X

i

~UU��0 ~JJ���i � ~JJ��
0�

i : (3)
Here ~JJ���i are integer-value currents [�d� 1�-dimensional
vectors] subject to the local zero-divergence constraint,
r � ~JJ���i � 0, and ~UU��0 �U��0=t relates the effective ac-
tion parameters to the original Hubbard Hamiltonian.
This model has the same superfluid and insulating phases
as Eq. (1), and we use it to understand the topology of
phase boundaries, the existence of multicritical points,
and first-order lines. We find it convenient to fix UA and
UB and to plot results in the �V; �� plane, where �� 1=t
is the scaling factor for all three dimensionless parame-
ters. The superfluid phases are identified by looking at

various superfluid stiffnesses, ����
s � h� ~WW����2i=dLd�2,

��PSF=SCF�
s �h� ~WW�A�� ~WW�B��2i=DLD�2, expressed in terms

of the winding number fluctuations [15], where ~WW��� �

L�1
P
i
~JJ���i (superfluid stiffness and compressibility are

equal in the space-time symmetric model).
In Fig. 1, we present the phase diagram of the two-

component J-current model in �d� 1 � 3� dimensions.
Corresponding superfluid stiffness goes to zero continu-
ously when approaching the lines of the critical points
labeled as U(1). The correlation radius exponent (ob-
tained from finite-size corrections) is consistent with
the known value for the U(1) universality class in 3D.
The first-order transition was identified by (i) a double-
peak structure of the energy distribution function (in
small-size systems) and (ii) hysteresis loops in all quan-
tities (in large-size systems). Though we have not per-
formed an exhaustive MC study of the phase diagram
in other dimensions we found (i) the I-order 2SF-MI
transition in d � 3 and (ii) no evidence for the first-order
2SF-MI transition in d � 1.

The I-order 2SF-MI line in the symmetric case (UA �
UB) becomes strongly suppressed by the anisotropy,UA �
UB � 0, between the components. For UB=UA � 2, the
point where all four phases meet is already a simple cross
of two U(1) lines—decoupled U�1� � U�1� tetracritical
point (see, e.g., [16]). Points where the I-order line starts
and ends represent multicritical points.

Normally, first-order transitions can be qualitatively
accounted for in simple mean-field models, and we pro-
pose such a model for our case. Away from the multi-
critical region, all transitions are of the U�1�-universality
class and, thus, described by the corresponding j j4 ac-
tions [4] for atomic,  A;  B, and molecular, �, fields. We
arrive at the simplest effective free energy by combining
three j j4 actions and writing the interaction term in the
form of the molecule ‘‘creation/annihilation’’ process out
of A and B particles. Omitting gradient terms,
050402-2
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FIG. 1. Phase diagrams of the d � 2 two-component J-current model in the �V; ��-plain for the symmetric, UA � UB � 2 (left),
slightly asymmetric, UA � 1:6, UB � 2 (center), and strongly asymmetric, UA � 1, UB � 2 (right) models. The first-order phase
transition line is dramatically reduced in the presence of weak anisotropy, and completely disappears for strong anisotropy between
the components. All horizontal error bars are smaller than point sizes (typically of order 10�3), and lines are used to guide the eye
and to distinguish between different phase boundaries. The inset shows more clearly the region where 2SF, PSF, and MI phases meet.
(Commensurability and intrinsic symmetry of the J-current model result in a straightforward mapping of the SCF regime onto PSF
one: V ! �V.)
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F � 1
2�rAj Aj

2 � rBj Bj2 � rMj�j2�

� 1
4�gAj Aj

4 � gBj Bj4 � gMj�j4�

� g��� A B � c:c:�: (4)

The mean-field phase diagram follows from minimi-
zation of F . In Fig. 2, taking advantage of the scaling
freedom for all the fields and F , we set ga � gB � gM �
g � 1. It reproduces correctly the topology of boundaries
between the phases and some of their properties. If the A-
B asymmetry is not large, it features an I-order line; see
Fig. 2. In the strongly anisotropic case, jrB � rAj > 1, the
MF theory also captures the disappearance of the I-order
transition. On another hand, the prediction of the pro-
nounced I-order 2SF-PSF line does not agree with the
numerical data in 3D. With our system sizes up to 1283

sites we did not find any evidence for the I-order 2SF-PSF
or 2SF-�MIB�SFA� transitions; see the inset in Fig. 1. It is
probably too early to draw the final conclusion on the
structure of the multicritical point, because a similar
study in 4D (for the system size 324) revealed a tiny
(but finite) I-order 2SF-PSF line. In any case, the sup-
pression of the I-order 2SF-PSF transition constitutes a
strong deviation from the MF prediction.
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FIG. 2. The mean-field diagram for rA � r, rB � r� 0:5 The
bold solid line corresponds to the first-order transition, and
dashed lines describe continuous transitions. In the limit of
rB ! rA, the SFA�MIB domain vanishes.
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First-order SF-MI transition in the single-component
system.—It is generally accepted that in the single-
component, commensurate Bose system the SF-MI tran-
sition is continuous [4]. Numerous simulations of the
on-site Hubbard and J-current models perfectly agree
with this picture (for the latest simulation, see [17]).

Excitations in MI are gapped and described as quasi-
particles and quasiholes with the relativistic disper-
sion law at small momenta (for small gaps): $�k� �����������������������
�2 � c2k2

p
, where c is the velocity of sound in the SF

phase. The dilute gas of quasiparticles is characterized
by the effective mass m� � �=c2 and some s-wave scat-
tering amplitude, a� (to be specific, we assume that
d � 3). If the scattering length is positive, the state of
the dilute excitation gas with density nqp is stable, and the
energy density cost of creating it is Eqp � ���(�nqp�
�2)a�=m��n2qp, where ( is the chemical potential. Since
the effective long wave action for the U(1)-transition has
a positive coefficient in front of the j j4 term, in the
vicinity of the critical point the MI state is always de-
scribed by positive a�. As the chemical potential is in-
creased above the threshold value �, the system state
becomes superfluid (this continuous MI-SF transition,
induced by adding extra particles/holes, is mean-field-
like [4]).

Imagine now a MI state with gapped quasiparticle
excitations, but now with negative effective scattering
length. Although the MI vacuum itself may remain
stable, the state of the quasiparticle gas at any small den-
sity nqpja�j3 � 1 is unstable against collapse to a dense
droplet.We thus conclude that this MI will undergo a first-
order phase transition to the superfluid state at some ( �
(c finite distance below � to gain negative potential
energy. Furthermore, if for some system parameters
� � 0, but (c � 0, the MI-SF transition in the commen-
surate system will happen by the I-order scenario, too.

We now argue that MI states with negative a� naturally
arise in models with strong pairing interactions when
potential energy favors two bosons on the same site, but
increases fast for occupation numbers ni > 2 to prevent
050402-3
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FIG. 3. Sketch of possible MI phases in the commensurate,
n � even, single-component Hubbard model with pairing in-
teractions and phase transition lines from MI to the SF and PSF
phases. The region between the crosses is characterized by first-
order MI-SF transition as a function of (.
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collapse. For sufficiently strong pairing, one may have a
superfluid state of tight molecules, or PSF (cf. [18]). When
repulsion between molecules is increased, PSF undergoes
a standard continuous PSF-MI transition. In the vicinity
of the transition point the lowest excitations above MI are
bound bosonic pairs. We observe then, that depending on
the value of the pairing interaction, there should exist at
least three MI ground states distinguished by the value of
the effective scattering length of its quasiparticles: as we
go along line C in Fig. 3, a� starts from a positive value
(the quasiparticle gas is stable), then changes sign and
becomes negative (the quasiparticle gas is unstable
against collapse), and finally goes through the pole and
changes sign again (the quasiparticle gas of molecules
is stable). It seems unlikely that SF, PSF, and three dif-
ferent MI phases meet at the same point. In our view,
the intersection of the SF-MI and ja�j � 0 lines marks the
beginning of the first-order SF-MI transition, while the
intersection of the PSF-MI and ja�j � 1 lines marks its
end. In this picture, the critical point where the SF-MI
line changes from continuous to first order is charac-
terized by the continuous Lorentz-invariant action with
zero j j4 term.

In d � 2, the weak logarithmic dependence of a� on
quasiparticle density does not change the qualitative
picture, because the first-order transition involves finite
particle density jumps. In d � 1, the notion of the scatter-
ing length is ill-defined, and two quasiparticles in the
long wave limit either form a bound state or repel each
other like hard-core spheres. We conjecture then that in
d � 1 (i) MI with first-order transition in( does not exist
and (ii) the SF-MI transition is always continuous.

The above considerations readily generalize to the A-B
symmetric two-component case. Now, the criterion for
the MI ground state, which is unstable against light
doping by A and B particles (for the symmetric case
�A � �B � �), follows from the scattering matrix
�a����0 becoming nonpositive definite due to an increas-
ing attraction between the components. We note that this
criterion must be satisfied in a finite region in parameter
space since the existence of AB molecules implies that
�a��AB can be arbitrarily large and negative before going
through the pole corresponding to the formation of the
bound state. This consideration, in complete analogy with
the single-component case, suggests that PSF-MI and
2SF-MI lines are ‘‘bridged’’ by the first-order line in
agreement with MC simulations and MF analysis.

To explain the suppression and disappearance of the
first-order region when the symmetry between the A and
B components is broken (see Fig. 1) we suggest that, for
strong anisotropy, the lowest excitations above the MI
ground state in the whole parameter range are either
A particles or AB molecules, and there is no reason for
collective instability in the quasiparticle gas. Formally,
this corresponds to pushing the j�a��ABj � 1 line into the
050402-4
SFA�MIB phase — this possibility does not exist in the
symmetric case.
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