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A model for earthquake dynamics consisting of two rough profiles interacting via fragments filling
the gap is introduced, the fragments being produced by the local breakage due to the interaction of the
local plates. The irregularities of the fault planes can interact with the fragments between them to
develop a mechanism for triggering earthquakes. The fragment size distribution function comes from a
nonextensive formulation, starting from first principles. An energy distribution function, which gives
the Gutenberg-Richter law as a particular case, is analytically deduced.
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The Gutenberg-Richter (GR) law has been considered
as a paradigm of manifestation of self-organized critical-
ity since the dependence of the cumulative number of
earthquakes with energy, i.e., the number of earthquakes
with energy greater than E, N(E), behaves as a power law:

N(E) ~ E", (D

where b is a critical exponent. A great number of studies
have been originated as a result of this law, where the
importance of the knowledge of the energy distribution of
the earthquakes and the physical and practical implica-
tions are emphasized [1].

Some famous models such as those of Burridge and
Knopoff [2] or Olami et al [3] have focused on the
mechanical phenomenology of earthquakes through
simple images which capture essential aspects of the
nature and genesis of a seism: the relative displacement
of tectonic plates or the relative motion of the hanging
wall and footwall on a fault and also the existence of a
threshold for a catastrophic release of energy in the
system.

Today it is widely accepted that most earthquakes are
originated by relative motion of fault planes, whereas the
images to model this energy release are diverse.

The standard picture usually assigns the cause of an
earthquake to some kind of rupture or some stick-slip
mechanism in which the friction properties of the fault
play the determinant role. A review of these viewpoints
and some generated paradoxes can be found in [4].

The GR law accounts for the seismicity generated in
large geographic areas, usually identified as ‘‘seismic
regions,” covering many geological faults. This is a sta-
tistical law—it does not say anything about a specific
earthquake, but it stems from direct measurements and
has not previously been connected with general principles
in physics.

In [2,3,5] the GR law was computationally reproduced,
showing that a stick-slip mechanism in a single fault
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representation is adequate to model the seismicity gener-
ated in such large areas characterized by a diversity of
fault sizes and depths, changes in mineral composition,
volcanic activity, etc.

The influence of the fault profiles in the characteristics
of earthquakes have been highlighted in [5] using a
geometric viewpoint to simulate the power law depen-
dence of the earthquake energy distribution (GR law) in
what represents one of the most important contributions
to the consideration of the role of the geometry of the
fault profiles in earthquake dynamics.

The energy release in the formation of the faults due to
the breakage of the earth crust can be manifested in
seismicity in the moment of fault formation, so it makes
sense to consider that the size distribution of faults in a
seismic region (which has been studied in [6,7]) must play
a role in the regional distribution of seismicity, but here,
following the same idea as [2,3,5], we focus on the
mechanism of relative displacement of fault plates, which
is recognized as a main cause of earthquakes.

In our picture we incorporate the fact that the space
between faults is filled with the residues of the breakage
of the tectonic plates, from where the faults originated. In
this respect, the influence of the size distribution of these
fragments in the energy distribution of earthquakes has
been predicted. In [8] this fact has been highlighted.

The great pressure existent between the two fault plates
is the main factor conditioning the complexity of the
fragment-asperity interaction, where eventually the frag-
ments may act as roll bearings as suggested in [9] and also
as hindering entities of the relative motion of the plates
until the growing stresses produce their liberation with
the subsequent triggering of the earthquake. To get a
realistic image of earthquakes, the role of the fragments
in the phenomenon must be recognized.

Nevertheless, its quantitative treatment, up to now
has not been considered, with the exception of [9] where
the fragments filling the gap are considered as circular
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disk-shaped pieces which act like bearings filling the
space between two planes. Though that image does not
deal with the GR law it is useful to explain the curious
fact that over very extended areas called ‘“‘seismic gaps,”
two tectonic plates can creep on each other without pro-
ducing either earthquakes or the amount of heat expected
from the usual friction forces.

We present a more realistic approximation, considering
that the surfaces of the tectonic plates are irregular and
the space between them contains fragments of very di-
verse and irregular shapes. We present a ‘“‘geometric”
image involving the fragments and irregularities between
the two fault plates with a fragment size distribution
deduced from a nonextensive entropy formulation.

The irregularities of the fault planes can be combined
with the distribution of fragments between them to de-
velop a mechanism of triggering earthquakes. In this
case, it is tempting to relate fragment size distribution
function with the energy distribution of the earthquakes.

In geophysics, the GR law is more frequently expressed
as a log-linear dependence between the number of earth-
quakes of a magnitude greater than a given one and the
value of this magnitude. However, the graphical repre-
sentation of this law for different catalogs reflects that for
the smallest magnitudes the dependence is not fulfilled. It
is usual to consider that this misalignment is due to the
threshold of sensitivity of the instruments, and, therefore,
the catalog is complete from a minimum value on, clearly
detectable by the instruments, so that only those values
larger than a given threshold are considered here.

On the other hand, for large magnitudes, the GR law
also fails, which reveals the limitations of this empirical
formula. The model we present here describes very well
the energy distribution in all the clearly detectable range
of magnitudes.

To start, let us consider the situation illustrated in
Fig. 1: two irregular profiles are able to slip as shown in

FIG. 1. An illustration of the relative motion of two irregular
faults in the presence of material filling the space between
them. Observe that this material may play the role of bearings
or also of particles that hinder the relative motion of the plates
as seen in the figure between points a and b.
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the figure. Their motion can be hindered not only by the
overlapping of two irregularities of the profiles, but also
by the eventual relative position of several fragments as
illustrated in the figure between the points “a” and “b.”
Stress in the resulting structure accumulates until a dis-
placement of one of the asperities, due to the displace-
ment of the hindering fragment, or even its breakage in
the point of contact with the fragment leads to a relative
displacement of the fault planes of the order of the size of
the hindering fragment “r.”

It is natural to consider that the displacement of the
fragments is more abundant than the breakage of asper-
ities, so most of the earthquakes (though not all of them)
may have their origin in that mechanism. Then, the
eventual release of stress, whatever is the cause, leads to
such a displacement with the subsequent liberation of
energy. As large fragments are more difficult to release
than small ones, we assume this energy “€” to be propor-
tional to r, so that the energy distribution of earthquakes
generated by this mechanism can reflect the size distri-
bution of the fragments between plates.

We can assume that the constant interaction and local
breakage of the fault planes produce the fragments. The
process of fault slip can be considered to occur in a
homogeneous fashion in the depth of the fault so that in
any plane transverse to the depth of the fault the situation
is the same. Then, to deduce the size distribution function
of the fragments, we consider a two-dimensional frame
such as the one illustrated in Fig. 1. Our problem is, then,
to find the distribution of fragments by area.

Here, we deduce the distribution starting from first
principles, ie., the maximum entropy formalism, from
where we deduce the probability of finding a fragment of
a given size.

The Boltzmann-Gibbs formulation in the maxi-
mum entropy principle proved to be useful in the study
of the fragmentation phenomena [10], though in that
work an important feature of fragmentation, i.e., the
eventual presence of scaling in the size distribution of
fragments was not obtained and the size distribution
function there obtained does not fit well with all the
experimental results.

The process of violent fractioning leads to the existence
of long-range interactions among all parts of the object
being fragmented. Then, fractioning is a paradigm of
nonextensivity. This suggests that it may be necessary
to use nonextensive statistics instead of the Boltzmann-
Gibbs one to describe the size distribution function of the
fragments.

We apply the maximum entropy principle for the
Tsallis entropy [11], which has been proposed and suc-
cessfully employed in a wide variety of situations where
nonextensivity is the hallmark in all of them [12].

The Tsallis entropy for our problem has the form

1 — [pio)do

S
g—1

=k , 2

q
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where p(o) is the probability of finding a fragment of
relative surface o referred to as a characteristic surface of
the system, g is a real number, and k is Boltzmann’s
constant. It is easy to see that this entropy reduces to
Boltzmann’s when g — 1. The sum by all states in the
entropy is here expressed through the integration in all
sizes of the fragments.

The maximum entropy formulation for Tsallis entropy
involves the introduction of at least two constraints. The
first one is the normalization of p(o):

f " plo)do =1, 3)
0

and the other is the ad hoc condition about the g-mean
value, which in our case can be expressed as

jo ® opi(o)do = (o)), 4

This condition reduces to the definition of the mean value
when g — 1. More information concerning the con-
straints that can be imposed in the formulation can be
seen in [12,13]. The formulation can also be performed in
terms of the escort probabilities, but the results in this
case are not essentially different.

As we already said, fracture is a paradigm of such long-
range interaction phenomenon, and recently our group
gave a formulation in terms of Tsallis statistics with
results that explain the experimental behavior of frag-
mentation phenomena [14]. Then the problem is to find
the extreme of s,/k subject to the conditions given by
formulas (2) and (3). To simplify, we assume (o)), = 1
(we see that this has no effect on the final result).

The standard method of conditional extremization of
the entropy functional leads to the expression of the frag-
ment size distribution function:

(2 — gV 9dg
[1+(g— 12— g)aV/Cag])/a=D

plo)do = &)
for the area distribution of the fragments of the fault
plates.

If we now introduce the proportionality of the released
relative energy & with the linear dimension r of the frag-
ments, as o scales with 72, the resulting expression for the
energy distribution function of the earthquakes due to
this mechanism is

C1 ede
[1 + Cpe?] /1’

ple)de = (6)
The probability of the energy p(e) = n(e)/N, where n(g)
is the number of earthquakes of energy € and N the total
number of earthquakes. C; and C, are constants involving
g and the proportionality constant between € and r.
Hence, starting from first principles, in this case the
extremization of the entropy functional, we have obtained
an analytic expression for the energy distribution of
earthquakes. No ad hoc hypothesis was introduced except
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the proportionality of € and r, which seems justified. (Of
course, a similar treatment can be performed with
Boltzmann’s entropy, and the inadequacy of the formula-
tion in that case will become evident for the reasons we
already explained.)

To use the common frequency-magnitude distribution,
the cumulative number was calculated as the integral
from & and ‘00’ of the formula (6); then

N(e>) _ (*
2 f ple)de, )

where N is the total number of earthquakes and N(g >)
the number of earthquakes with energy larger than e.
This rate defines the “excedence,” i.e., the relative cumu-
lative number, in this case applied to the earthquakes with
energy larger than e.

On the other hand, m o log(e) where m is the magni-
tude, so we substitute formula (6) in (7) and change from
the variable & to m, so we get
log(N(> m)) =logN + (? ?)

X log[l +a(g — 1)
X (2 — q)1=9/a=2 x 102, (8)

This is not a trivial result, and incorporates the char-
acteristics of nonextensivity into the distribution of
earthquakes by magnitude. a is the constant of pro-
portionality between & and r.

This is the simpler model we can make, since a pro-
portionality of the energy with another power of r can be
introduced in this representation, or the deduction of
fragment sizes by volume instead of area can be calcu-
lated, but this leads only to a new constant to be adjusted
or a new value of the nonextensivity constant as can be
seen from the analysis of the process of deduction of
formulas (6) and (7).

Figure 2 shows the application of this formula to the
catalogs of the Iberian Peninsula (IGN, Spain, http://
www.geo.ign.es/), Andalucia (IAG, Spain, http://www.
ugr.es/iag/), and California earthquakes (NEIC, USA,
http://neic.usgs.gov/neis/epic/). We are considering earth-
quakes with magnitude m > 3, i.e., detectables, and this
is unbiased due to the sensitivity threshold of instru-
ments. We compare the observed data with G(> m) =
N(> m)/N, ie., the excedence, defined as the relative
cumulative number, which can be obtained from for-
mula (8), to have a measure of the relative occurrence
of earthquakes. As the total number of earthquakes, it
was chosen the total number with magnitude greater than
the threshold. There is a nice agreement of formula (8)
with the data.

For the first time, a functional dependence was ob-
tained for the distribution of earthquakes produced by
interactions in the space between the fault planes, starting
from first principles, i.e., a nonextensive formulation of
the maximum entropy principle (the Tsallis formulation).
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FIG. 2. We use formula (8) to calculate the relative cumulative
number of earthquakes (excedence) to different catalogs:
California (circles: over 10 000 earthquakes, ¢ = 1.65,and a =
5.73 X 1079), Iberian Peninsula (triangles: 3000 earthquakes,
qg=1.64, and a=337X 107%), and Andalusian region
(squares: 300 earthquakes, ¢ = 1.60, and a = 3 X 107).

The active role of the material between the fault planes
was revealed with this model. Nonextensivity is, as can be
seen, determinant to obtain the energy distribution of
earthquakes in a wide energy range. No a priori assump-
tion about the fault profile or shape of the fragments was
needed.

The nice agreement with the data also expresses an
advantage of this model. Other representations as that of
[5] are computationals, reproduce only the region of
power law behavior, and then cannot explain the observed
data of so varied catalogs in a wide range of magnitudes.
This model provides the same physics for all the scales.
No particular explanations for different ranges of magni-
tudes are needed.

It is very interesting to observe the similarity in the
value of the nonextensivity parameter g for all the cata-
logs used. Though intriguing to some extent, this reveals
that the obtained formula is not a mere fitting artifact,
and we think that a more exhaustive study of the non-
extensive statistics and its relation with earthquakes is
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needed to give a deeper interpretation of this result. But,
even if it were not so and the obtained expression could be
interpreted by someone as a fitting tool, let us note that it
is based on a physical image that recovers the main
characteristics of earthquake dynamics, i.e., the interac-
tions between plates and fragments in a more realistic
representation than those proposed up to now.
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