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Symmetry of Two-Terminal Nonlinear Electric Conduction
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The well-established symmetry relations for linear transport phenomena cannot, in general, be
applied in the nonlinear regime. Here we propose a set of symmetry relations with respect to bias
voltage and magnetic field for the nonlinear conductance of two-terminal electric conductors. We
experimentally confirm these relations using phase-coherent, semiconductor quantum dots.
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FIG. 1. Schematic electron trajectories for positive and nega-
tive magnetic fields. In the absence of symmetry in a meso-
scopic device, the conductance is not expected to be symmetric
metry relations with respect to bias voltage and magnetic
with respect to the direction of a magnetic field, when a bias
voltage defines a source and a drain contact.
Symmetries with respect to the sign of a bias voltage
and the direction of an applied magnetic field B are
central to our understanding of electron transport phe-
nomena. In the linear response regime, the Onsager-
Casimir relations ����B� � �����B� describe these
symmetries in terms of the local conductivity tensor [1].
These relations were derived for macroscopic, disordered
solid-state conductors where the conductor boundaries
are unimportant. In mesoscopic samples, the character-
istic length scales for elastic and inelastic (phase-
breaking) scattering can exceed the dimensions of the
device. In this limit a local description of transport is
not possible, and the reciprocity theorem R12;34�B� �
R34;12��B� must be used [2,3]. For two-terminal conduc-
tors, the reciprocity theorem reduces to G12�B� �
G12��B�, where G12 is the conductance with the current
flowing from contact 1 to 2. The sign of the source-drain
bias voltage and the orientation of the measurement leads
are of no consequence in the linear response regime, such
that G12�B� � G21�B�.

The reciprocity theorem breaks down in the nonlinear
response regime [4–7]. In the general case, where the
conductor has no symmetry (e.g., due to disorder),
G12�V� � G12��V�. This is because, if an applied voltage
modifies the asymmetric device potential, the resulting
device potential depends on the voltage sign [6–8]. Simi-
larly, no symmetries with respect to magnetic field are
expected for an asymmetric device, that is, G12�V; B� �

G12�V;�B� (for an illustration, see Fig. 1).
While the general breakdown of the reciprocity theo-

rem in the nonlinear transport regime is well known
[4–7], a systematic evaluation of surviving symmetries
in this regime has not previously been attempted. It is the
point of this Letter to establish a complete set of sym-
metry relations for the nonlinear conductance of two-
terminal conductors. One important motivation is that
the nonlinear regime is fundamental to applications of
submicron electronic devices, for which linear response
is limited to very small voltages [4,5].

In the following, we consider conductors without sig-
nificant disorder. We first propose a set of general sym-
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field for the nonlinear electric conductance. We show that
symmetry of nonlinear transport requires geometrical
symmetry of the conductor—a substantial experimental
challenge in terms of fabrication and material quality.
Using purposely designed semiconductor quantum dots,
we then demonstrate that the symmetry relations are
experimentally observed and that deviations from perfect
geometrical symmetry can be measured.

Without loss of generality, we consider triangular con-
ductors because of their simple geometrical shape. We
refer to a device as left-right (LR) symmetric when it
possesses a symmetry axis perpendicular to the current
direction and up-down (UD) symmetric when it pos-
sesses a symmetry axis parallel to the current direction.
We consider the symmetry of the nonlinear electrical
conductance under reversal of voltage, magnetic field,
and lead orientation. In this context it is important to
note that in a real experimental setup the reversal of
voltage (V ! �V) is not generally equivalent to physi-
cally interchanging the leads attached to the probes
(G12 ! G21), because the circuit used to measure the
conductance may itself be asymmetric. For instance,
the gate voltage Vg used to electrostatically define the
conductor’s shape is usually set with respect to the drain
contact on one side of the device, breaking the circuit
symmetry. When appreciable source-drain voltages are
used, the resulting gradient in the local electrochemical
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potential along the conductor deforms the device poten-
tial defined by the gate in a way that depends on the
voltage sign. This can lead to circuit-induced asymmetry
(CIA) of the conductance even when the device itself is
LR symmetric [9–11]. In order to avoid CIA, special care
must be taken in the device design [12]. Here we focus on
so-called ‘‘rigid’’devices, in which CIA is not significant,
and refer the reader to Ref. [11] for a discussion of devices
that are not rigid.

For rigid devices, regardless of their symmetry, a volt-
age reversal is equivalent to swapping source and drain
leads, such that

G12�V; B� � G21��V; B� �rigid�: (1)

This relation is illustrated in Fig. 2 (compare, for in-
stance, configurations A and G or D and F).

For the special case of rigid devices that are LR sym-
metric, we expect

G12�V; B� � G12��V;�B� �LR; rigid�: (2)

Equation (2) holds independent of whether or not the
device is UD symmetric, but is not expected if LR sym-
metry is absent. This can be seen by comparing, for
instance, A and D or B and C in Fig. 2.

UD symmetry implies that, for a given voltage, rever-
sal of a magnetic field perpendicular to the device plane
should be of no consequence for electron transport [8]:

G12�V;B� � G12�V;�B� �UD�: (3)

This can be seen by comparing, for instance, A and B in
Fig. 2. Note, however, that the absence of LR symmetry
implies that in the nonlinear regime G12�V� � G12��V�,
regardless of the magnetic field sign [5,7,8]. Equation (3)
does not involve a reversal of lead orientation or voltage
FIG. 2 (color). Illustration of the symmetry relations ex-
pected for a rigid device in the nonlinear regime and at finite
magnetic field. The upper and lower rows show the two possible
lead configurations G12 and G21, distinguished by the position
of the grounding point relative to the device. Different classical
electron trajectories illustrate the difference in transmission
probability that results when the potential depends on the sign
of the voltage applied to the source contact. Positive magnetic
field is taken to be into the page.
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sign and is therefore valid for both rigid and nonrigid
devices.

Finally, we note that the conductance of a LR-
symmetric device (regardless of rigidity and UD sym-
metry) is expected to be invariant upon reversal of lead
orientation and of the external magnetic field:

G12�V; B� � G21�V;�B� �LR�: (4)

Relationships (1)–(4), the first main result of our Letter,
are based on fundamental symmetry arguments and are
therefore expected to hold in both the classical and quan-
tum regimes of transport. In order to test these relation-
ships, we used ballistic semiconductor devices defined
by deep wet etching in modulation-doped, 9 nm thick
InP=GaInAs quantum wells. The devices were of
equilateral-triangular shape with a side length of 1 �m,
smaller than the electrons’ elastic mean free path of
6:1 �m and smaller than the phase-coherence length
l� � 3:5 �m at T � 230 mK and V � 0 (l� � 1:7 �m
at T � 230 mK and V � 3 mV). In this phase-coherent
regime of electron transport, the wavelike nature of the
carriers leads to conductance fluctuations (CF) as a func-
tion of an applied magnetic field. Because of their origin
in wave interference, and because of the short Fermi
wavelength (30 nm), details of the CF are known to be
sensitive to the exact shape of the potential forming the
device and to defects or impurities [13]. Phase-coherent
measurements of CF are therefore particularly well suited
to test the influence of device geometry and of disorder on
the conductance symmetry. Contact openings used to
measure the conductance were positioned such that
either UD-symmetric (Fig. 3) or LR-symmetric (Fig. 4)
quantum dots were formed. Two-terminal magnetocon-
ductance measurements were carried out in four-point
geometry. A small ac signal (rms amplitude 20 �V, com-
parable to kT � 20 �eV) was added to a tunable dc bias
voltage V. The differential conductance gij � dIij=dVij
was measured using lock-in techniques in order to reduce
measurement noise. We checked that there was no signifi-
cant non-Ohmic behavior in the circuit.

Figure 3 shows gij for a bias voltage jVj � 1 mV �
50kT=e as a function of a perpendicular magnetic field for
an UD-symmetric, triangular quantum dot [14]. The eight
traces shown are individual measurements taken over the
course of 2 days in the eight possible configurations of
sign of the bias voltage, direction of the magnetic field,
and lead orientation (see Fig. 2). As expected for a device
lacking LR symmetry, the CF are not symmetric in V, as
we note from a comparison of Figs. 3(a) and 3(b) or
Figs. 3(c) and 3(d) [15]. However, for a rigid device,
Eq. (1) predicts that reversal of the leads and bias voltage
should lead to identical CF, regardless of the device
symmetry. The similarity of traces shown in the same
color (for instance, A and G or D and F) qualitatively
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FIG. 3 (color). Magnetoconductance fluctuations for an UD-
symmetric quantum dot measured in the eight possible differ-
ent configurations of lead orientation, sign of bias voltage, and
sign of magnetic field (capital letters refer to the panels in
Fig. 2): (a) g12�V � �1 mV;�B�, (b) g12�V � �1 mV;�B�,
(c) g21�V � �1 mV;�B�, and (d) g21�V � �1 mV;�B�. The
lower trace in each panel has been offset by �0:5e2=h for
clarity. The inset in (a) shows dLR=d0, dUD=d0, and dCIA=d0 as a
function of V (lines are guides to the eye).

FIG. 4 (color). Magnetoconductance fluctuations g12�V;B� of
a LR-symmetric device for V � 0, V � �2 mV, and V �
�2 mV (capital letters in each measurement configuration
refer to the corresponding panel in Fig. 2). Data are offset
for clarity. Note that g12�V; B� � g12�V;�B�, while g12�V;B�
and g12��V;�B� show very similar features, as predicted by
Eq. (2) (see, e.g., the marked features). Inset: dLR=d0 and
dUD=d0 as a function of V (d0 � 4:21� 10�2e2=h for this
device). Lines are guides to the eye.
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verifies Eq. (1) and shows that the device used in Fig. 3
can be regarded as rigid [12].

According to Eq. (3), in the presence of perfect UD
symmetry conductance fluctuations should be unaltered
when the direction of the magnetic field is reversed. This
prediction can be tested by comparing the pairs of traces
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in the individual panels in Fig. 3 (e.g., A and B or C and
D). Again, striking similarities are observed.

In order to quantify the difference between two mag-
netoconductance traces, say, the difference dAB between
traces gA�B� and gB�B� measured in configurations A and
B, respectively, we determine the root mean square (rms)
of their difference, using 103 data points spaced by 0.5 mT
between B � 0 and Bmax � �0:5 T:

dAB �

�����������������������������������������������������������������
1

Bmax

Z Bmax

0
	gA�B� � gB�B�
2dB

s
: (5)

The value dAB � 0 would correspond to identical traces.
To calibrate the influence of experimental noise and setup
instabilities on d, we use two CF traces recorded 2 days
apart in nominally identical configurations (V � 0).
Separately evaluating d for the traces recorded for posi-
tive and negative magnetic field and then averaging the
results, we find d0 � 2:99� 10�2e2=h, a value compa-
rable to experimental noise (�0:5%) of the device con-
ductance. In comparison, the four pairs of traces that
should be identical if the device is rigid (A–G, B–H,
C–E, D–F) yield an averaged value of dCIA �
�dAG � dBH � dCE � dDF�=4 � 3:10� 10�2e2=h and
dCIA=d0 � 1:04. A comparison of data sets that, accord-
ing to Eq. (2), should be the same if the device was LR
046803-3
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symmetric (A–D, B–C, E–H, F–G), yields dLR=d0 �
3:05. In comparison, a test for UD symmetry (A–B, C–
D, E–F, G–H) yields the averaged value dUD=d0 � 1:77.
In other words, the intentional absence of LR symmetry
in the device geometry causes the largest conductance
asymmetry, while unintentional deviations from UD
symmetry, such as material and fabrication imperfec-
tions, have a significantly smaller, but measurable effect.
The effect of CIA in our devices is not significant com-
pared to experimental noise, confirming that the device
is rigid. Note, however, that CIA can be substantial
in other devices, for instance, in some surface-gated
devices [9,10,12].

The inset in Fig. 3(a) shows the quantified asymmetries
(normalized to d0) as a function of increasing bias volt-
age. Consistent with a first order nonlinear effect, dLR
increases approximately linearly with bias voltage. On the
other hand, dUD, which is attributed to imperfections in
the UD symmetry of the device, which are not expected
to change with voltage, increases only weakly with V. At
all voltages used, the influence of CIA remained insig-
nificant compared to the noise level (dCIA=d0 � 1).

For comparison with the UD-symmetric device dis-
cussed so far, in Fig. 4 we show CF for the LR-symmetric
device. Whereas at V � 0 (linear regime) the conduc-
tance is symmetric in B, at finite V (nonlinear regime)
each of the two data traces taken is not symmetric in B,
due to the absence of UD symmetry. However, one can see
by comparing the marked conductance features that
g12�V; B� � g12��V;�B�. This observation confirms
Eq. (2) and indicates that the device is rigid, consistent
with our conclusion about the UD-symmetric device. We
therefore expect that any dLR observed should be due to
unintentional deviations from LR symmetry. Indeed, at
all bias voltages used dLR=d0 for this device (see inset in
Fig. 4) is substantially smaller than for the LR-asymmet-
ric device used in Fig. 3. As one would expect intuitively
from the symmetry of the device, for small bias dLR is
also smaller than dUD (inset in Fig. 4). Note, however, that
the values found for dUD=d0 in the UD- and the LR-
symmetric devices are comparable, highlighting an
interesting open question: At present, no theoretical pre-
diction about the dependence of dUD on disorder, mag-
netic field, or bias voltage is available. Our data [see insets
in Figs. 3(a) and 4] suggest a sublinear increase of dUD
with V and little sensitivity to the amount of intentional
asymmetry.

In summary, we have demonstrated, using a sensitive
experimental test, a set of novel symmetry relations for
the electric conductance of mesoscopic devices in the
nonlinear regime and in the presence of a magnetic field.
Our prediction of these symmetry relations is based on
symmetry arguments. A natural next step would be a
rigorous theoretical study along the lines of Ref. [3] and
applicable to the nonlinear regime of transport.
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