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Warm Cascades and Anomalous Scaling in a Diffusion Model of Turbulence
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A phenomenological turbulence model in which the energy spectrum obeys a nonlinear diffusion
equation is analyzed. The general steady state contains a nonlinear mixture of the constant-flux
Kolmogorov and fluxless thermodynamic components. Such ‘‘warm cascade’’ solutions describe a
bottleneck phenomenon of spectrum stagnation near the dissipative scale. Transient self-similar
solutions describing a finite-time formation of steady cascades are analyzed and found to exhibit
nontrivial scaling behavior.
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Besnard et al. [3] that a broad range of spectral diffusion
may point to a generic phenomenon observed in the
dynamics of flux spectra of Kolmogorov type.
INTRODUCTION

A theoretical understanding of the statistics of hydro-
dynamic turbulence and the origin of Kolmogorov’s 5=3
spectrum, postulated from dimensional considerations in
1941, is one of the outstanding problems of classical
physics which continues to resist modern efforts at solu-
tion. The difficulty lies in the strong nonlinearity of the
governing Navier-Stokes equations which leads to an
unclosed hierarchy of equations which must be solved
to obtain the moments of the velocity distribution. Given
the seeming intractability of this so-called ‘‘closure prob-
lem,’’ models have come to play an important role in
understanding the physics of turbulence over the years.
A model of a physical system aims to encapsulate certain
properties of interest while disregarding others in the
hope that understanding can be translated back to the
original system from the simpler one. In this Letter we
are interested in a class of models which could be called
spectral diffusion models. These describe the time evo-
lution of the spectral energy density, E�k; t�, in terms of a
partial differential equation by making a diffusion ap-
proximation to the energy transport process in the wave
number or k-space representation. One of the first such
models was studied by Kovasznay [1] who proposed a first
order equation based on a dimensionally consistent phe-
nomenological expression for the energy flux which ad-
mits the Kolmogorov k�5=3 spectrum as a stationary
solution. Later, Leith [2] proposed a second order equa-
tion which allowed for the possibility of a stationary
thermodynamic equilibrium spectrum in addition to the
Kolmogorov spectrum. Variations on Leith’s model have
been analyzed extensively since they facilitate the study
of the dynamics which govern the establishment and
decay of the Kolmogorov spectrum without the need
to analyze the nonlocal energy transfer process inherent
in the Navier-Stokes equations. It has been shown by
0031-9007=04=92(4)=044501(4)$22.50 
models exhibit self-similar decay spectra consistent with
the 5=3 law.

In this Letter, we focus on one such model equation
which is very close to Leith’s original [4]:
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where t is time, k is the absolute value of the wave
number, � is the kinematic viscosity coefficient and f is
an external forcing. E�k; t� is normalized so that the
kinetic energy density is

R
Edk. We select this particular

equation from the family of equations studied in [3] on
the basis that, in the absence of the forcing and dissipation
terms, it admits the correct thermodynamic spectrum,
E�k� � Q2=3k2, in addition to the Kolmogorov spectrum,
E�k� � P2=3k�5=3, as particular steady-state solutions. In
these spectra, P and Q are constants. In what follows we
note that the general steady state is actually a nonlinear
combination of both thermodynamic and Kolmogorov
components. We find that in the presence of forcing and
damping, assuming that an inertial range interval exists,
these mixed spectra can be relevant if the dissipation is
too weak or the high k cutoff too small. We also inves-
tigate the nonstationary solutions of (1) in the inviscid
case beginning with an initial spectrum compactly sup-
ported at low k. We discover the existence of a transient
self-similar regime preceeding the breaking of energy
conservation (which occurs once the cascade has pro-
ceeded far enough to generate a finite flux of energy to
k � 1). This regime is interesting because it does not
exhibit the scaling inherited from the Kolmogorov spec-
trum. These results are in line with recent studies [5] of
analogous problems in the theory of wave turbulence and
2004 The American Physical Society 044501-1
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FIG. 1. Numerically computed steady states for several
choices of dissipation function (3) : �1�k� has �0 � 1, kD �
500 and � � 2, �2�k� has �0 � 4:0
 10�6, kD � 500 and � �
4, �3�k� has �0 � 1:0
 10�2, kD � 0 and � � 2. The
Kolmogorov spectrum is also shown for comparison but
shifted slightly for clarity.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 1  10  100  1000

E
(k

)

k

Evolution of bottleneck for v(k) = 1E-5 (k-500)^2

t=t*
t=t*+5E-4

t=t*+1.5E-3
t=t*+1.15E-2

t=t*+1.115E-1
t=t*+1.3115E0

Theoretical steady state

FIG. 2. Numerical evolution of a bottleneck for dissipation
function (3) with �0 � 1:0
 10�5, kD � 500 and � � 2. The
resulting steady state is well described by the solution (2).
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STATIONARY SOLUTIONS

First, let us consider steady-state spectra in the inertial
range. For f � � � 0, we have the following general
time-independent solution,

E � Ck2 �Pk�11=2 �Q�2=3; (2)

where C � �24=11�2=3 � 1:68 and P and Q are arbitrary
constants. For Q � 0, this gives the pure Kolmogorov
cascade solution, whereas for P � 0 this is a pure ther-
modynamic equilibrium. For the general solution, both
the constant flux of energy P � � 1

8 k
11=2E1=2�E=k2�k � 0

and a thermodynamic part (Q � 0) are present as a non-
linear combination. We refer to solution (2) with finite P
and Q as a warm cascade to distinguish it from the pure
Kolmogorov solution which could be viewed as a cold
cascade.

Let us suppose that the forcing is compactly supported
in a narrow interval around k � k0 and that a large
inertial range exists to the right which ends at a very
high k� kd where viscosity � or some other dissipation
mechanisms [f�k�< 0] become important. Then, up-
scale of the forcing there will be a pure thermodynamic
solution with P � 0 and Q � 0 because there is no dis-
sipation or forcing assumed to be present near k � 0 to
absorb or generate a finite energy flux. In the inertial
range there will be a constant-flux cascade solution. This
solution typically takes the form of a pure Kolmogorov
(cold) cascade and extends down to the dissipation range
where the energy flux is absorbed. The solution only
penetrates a finite distance into the dissipation range
and adapts itself until it provides sufficient dissipation
to absorb the supplied flux, a point noted implicitly in [3].
The model does not develop structure at arbitrarily high k
as it would in the inviscid case. The qualitative features of
the steady state are independent of the detailed form
chosen for the dissipation. We studied a family of dis-
sipation functions,

��k� �
�
�0�k� kD��; k 	 kD;
0; k < kD;

(3)

where �0, kD, and � are adjustable parameters. Figure 1
shows the steady-state solutions in the inertial range
obtained numerically for several choices of these
parameters.

However, if the dissipation is too weak, the solution
can penetrate far enough into the dissipation range to
reach the maximal wave number which necessarily exists
in any numerical solution. If one imposes a zero flux
condition at the right end of the computational interval,
the energy flux is reflected from the maximal wave num-
ber leading to greater values of E in the dissipative range.
Such a cascade stagnation acts to enhance the dissipation
rate and thereby to adjust it to the energy flux to be
absorbed. A similar phenomenon is common in numeri-
cal simulations of turbulence and is sometimes called a
044501-2
bottleneck. Figure 2 shows a numerically obtained steady
state for a dissipation function, having �0 � 1:0
 10�5,
kD � 500, and � � 2. The bottleneck-like phenomenon
is clearly seen as an energy ‘‘pile up’’ over the cold
cascade solution near the dissipative scale. In our model,
the bottleneck phenomenon is described by the warm
cascade solutions; in particular, the theoretical curve in
Fig. 2 is computed by taking P � 14:5, Q � 1:5
 10�9

in Eq. (2).We should note, however, that this bottleneck in
the Leith model differs from the bottleneck in the Navier-
Stokes equations as explained by Falkovich [6] in several
respects. In particular, the usual bottleneck is intrinsi-
cally nonlocal and, according to [6], can occur without a
high k cutoff. On the other hand, warm cascades in the
Leith model are necessarily local and require a k-space
cutoff. Nevertheless the phenomenon of an increase in
turbulence level at small scales to compensate for a frus-
trated energy transfer mechanism is common to both.

Some insight about the qualitative behavior of the
system can be gained from considering stationary
044501-2
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FIG. 3. Forced time-dependent solutions beginning from
compact initial data showing development of self-similar front
with power law wake. The Kolmogorov and transient spectra
are also shown, offset for clarity.
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solutions (2) in an inertial range k1 < k< k2 and fixing
the spectrum at its boundaries, E�k1� � E1; E�k2� � E2.
These boundary conditions might roughly model the
forcing and the dissipation effects outside of the inertial
range. This gives

P � ��E2=Ck
2
2�

3=2 � �E1=Ck
2
1�

3=2�=�k�11=2
2 � k�11=2

1 �;

(4)

Q � �k5=22 �E2=C�3=2 � k5=21 �E1=C�3=2�=�k
11=2
2 � k11=21 �:

(5)

Thus, the sign of P is opposite to the sign of �E2=E1 �
k22=k

2
1� and can be either positive or negative depending on

the spectrum steepness with the thermodynamic k2 solu-
tion being a borderline case for which P � 0. The con-
stant Q can also be either positive or negative with the
Kolmogorov �5=3 being the borderline slope. It is con-
venient to think of the Q< 0 solutions as negative tem-
perature states although it is unlikely that such states
could arise from physically reasonable forcing and dis-
sipation profiles.

NONSTATIONARY SOLUTIONS

So far we concentrated on the stationary solutions but
how do these solutions form? We consider from now on
the inviscid case. The Kolmogorov �5=3 spectrum is of a
finite capacity type in that it contains only a finite amount
of energy at the high k end. If we take as an initial
condition a spectrum which is compactly supported, an
infinitely remote dissipative scale should therefore be
reached in a finite time. It is well known (see, for ex-
ample, [7] and the references therein) that the solutions of
nonlinear diffusion equations often have the property of
remaining compactly supported during the time evolution
if the initial data is compactly supported. This turns out
to be the case here. The solution has a ‘‘sharp’’ nonlinear
front at k � k�t� and this front accelerates explosively,
reaching k � 1 at a finite singular time which we shall
denote by t. Let us look for a self-similar solution taking
the following form:

E � �t � t�aF���; � � k=k; k � c�t � t�b;

(6)

where a, b, and c are constants. Clearly, b must be
negative since we require that k ! 1 as t ! t.
Substituting (6) into (1) with f � � � 0 we find that
the t dependence drops out of the equation if a � �2�
3b: We then have the following equation for F,

�3b� 2�F� b�F0 �
c3=2

8
��11=2F1=2�F=k2�0�0; (7)

where prime means differentiation with respect to �.
Equation (7) defines a one-parameter family of self-
similar solutions. The solution near the front tip can be
044501-3
found by expanding F in series with respect to small
�1� ��; in the leading order we have

F �
16b2

c3
�1� ��2; (8)

which gives for the spectrum

E �
16b2

k3�t � t�2

�
1�

k
k

�
2
: (9)

We look for solutions which behave like a power law far
behind the front. That is, E� k�x as k ! 0. The relations
(6) then imply that x � �a=b. The pure Kolmogorov
spectrum, x � 5=3, therefore requires b � �3=2, corre-
sponding to what one might consider to be normal scaling
in the wake of the front.

We performed numerical simulations of both the
forced and decaying solutions of Eq. (1) with compact
initial data to check the development of a self-similar
front with a tip of the form (8) and to determine which
value of b is selected. The results for the forced case are
shown in Fig. 3. Corresponding results for the decaying
case can be found in [8]. The scaling parameter, b, and the
singular time, t, are most conveniently extracted from
the relation

k

�
dk
dt

�
�1
� �

1

b
�t � t�; (10)

which allows one to calculate b and t from a linear fit of
the data near t � t as shown in Fig. 4. We find that t �
0:0799 and b � �1:748 which corresponds to a signifi-
cantly steeper than Kolmogorov slope, x � 1:856. The
singular time, t depends on the choice of initial con-
ditions but the anomalous scaling exponent does not. In
particular, we found that the same value of b is obtained
in the case of decaying turbulence. Such anomalous scal-
ing behavior whereby the exponent of the solution in the
044501-3
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FIG. 4. Calculation of the asymptotic scaling properties of
the self-similar solution for the forced case. The fitted line has
slope 1=b � �0:572 and t intercept t � 0:0799.
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wake of the nonlinear front is larger than the Kolmogorov
value has been observed before. Examples include MHD
wave turbulence [9] and weak turbulence with local
interactions [5].

For the model (1) the origin of the anomaly can be
traced to the question of existence of a solution of the
similarity Eq. (7) which has the correct behavior both at
the front tip, � ! 1, and in the wake, � ! 0. Written in
terms of x rather than b and rescaled to get rid of the
constant c, the similarity equation is

2

x� 3

�
�
dF
d�

� xF
�
�

d
d�

�
�11=2

����
F

p d
d�

���2F�
�
: (11)

We require that this equation have a solution which be-
haves as ��x as � ! 0 and behaves as �1� ��2 as � ! 1.
Such a solution is not typical and actually exists only for
one value of x. In particular, such a solution does not exist
for x � 5=3, the Kolmogorov value. The structure of the
problem can be studied by introducing a new independent
variable, s � log� and a pair of dependent variables, f�s�,
g�s� defined by

F �
1

25
��3f2;

dF
d�

�
3

25
��4fg: (12)

Equation (11) is equivalent to the following autonomous
first order system:

df
ds

�
3

2
�f� g�; (13)

f
dg
ds

�
1

3

�
5f2 � 6fg� 9g2 �

10

x� 3
�3f� xg�

�
:

The associated dynamical system has three equilibria
044501-4
P1 � �0; 0�, P2 � �0; 10=3�x� 3��, and P3 � �1;�1�.
Note that P1 and P2 are singular points of the original
equations, (13). The point P1 can be shown to correspond
to the wake and P2 to the tip. The required solution exists
when the unstable manifold of P1 intersects the stable
manifold of P2. Numerical investigation of the phase
plane shows that this happens only for x � 1:85. For
details, see [8].

In practice, any model should include dissipation so
that this self-similar solution above will be valid only
until the front tip meets the dissipation scale. After this,
the transient slope gets replaced in the inertial range by
the stationary cascade solution, with or without bottle-
neck depending on the dissipation, as discussed above.

CONCLUSION

We conclude with some brief comments about the
possible wider applicability of these ideas and about
which features might be model dependent. First, we ex-
pect that the presence of a sharp front in the Leith model
is a property of the locality of the energy transfer.
Although this feature would surely disappear once non-
local inteactions are taken into account, the notion of
finite energy capacity remains valid. Therefore the tran-
sient regime discussed here might also be present in
Navier-Stokes turbulence. Second, one of the potential
practical uses of spectral diffusion models lies in cou-
pling them to more complicated models, computer simu-
lations, for example, in order to provide a description of
small scale turbulence. Our analysis of the warm cascades
which can develop if the dissipation is insufficient should
caution us that such applications should be constructed
with care.

We thank Ildar Gabitov and Alan Newell for helpful
discussions.
[1] L. Kovasznay, J Aeronaut Sci 15, 745 (1947).
[2] C. Leith, Phys. Fluids 10, 1409 (1967).
[3] D. Besnard, F. Harlow, R. Rauenzahn, and C. Zemach,

Theor. Comput. Fluid Dyn. 8, 1 (1996).
[4] C. Leith, Phys. Fluids 11, 1612 (1968).
[5] C. Connaughton, A. Newell, and Y. Pomeau, Physica

(Amsterdam) D184, 64 (2003).
[6] G. Falkovich, Phys. Fluids 6, 1411 (1994).
[7] A. Lacey, J. Ockendon, and A. Tayler, SIAM J Appl.

Math. 42, 1252 (1982).
[8] C. Connaughton and S. Nazarenko, physics/0304044.
[9] S. Galtier, S. Nazarenko, and A. Newell, J. Plasma Phys.

63, 447 (2000).
044501-4


