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We discuss the problem of creating coherence in an optically driven quantum system in conditions
where decoherence is caused by the laser field itself, due to coupling of the system to a rapidly decaying
state or continuum. It is shown that by applying an additional laser field between this state and a bound
state the relaxation channel can be suppressed as a result of a ‘‘dark state’’ formation, giving rise to long
living Rabi oscillations in the system. It is found that the same mechanism of preserving coherence
exists in systems with level splitting or degeneracy, where the driving field interacts with multiple
resonant sublevels simultaneously. We also show that specific coherent propagation phenomena assisted
by the interference suppression of decoherence can be observed under these conditions.
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other fields, e.g., in laser chemistry and laser spectroscopy by quantum interference phenomena [‘‘dark states,’’
Coherent dynamics of quantum systems interacting
with complex shaped optical fields has recently become
the focus of many theoretical and experimental studies.
An important goal is to reveal physical factors leading to
a loss of coherence (e.g., the information about the phase
of the wave function of the system) and determine con-
ditions under which the system would retain phase
‘‘memory’’ for a possibly longer time [1]. This is very
important for the concept of coherent control, where a
laser field is used to bring a system into a specific quan-
tum state in order to facilitate chemical reactions [2,3].
Another fundamental aspect is the proposed possibility to
exploit quantum memory for information storage and
data processing. Recently, an optically driven two-level
system was suggested as a simple model of quantum bits,
and simple operations (e.g., storing and readout of quan-
tum information using atomic [4], ionic [5], and excitonic
[6] systems controlled by � and 2� pulses) were demon-
strated. In the ideal case, a two-level system should allow
one to do as many operations as possible during the time
it is quantum mechanically coherent. This suggests that
the parameter (�RabiT2) (where �Rabi is the Rabi fre-
quency and T2 is the decoherence time) should be as large
as possible. One way to achieve a higher value of this
parameter is to control the coupling to environment to
provide a longer T2 [5,7]. Alternatively, the efficiency can
be increased by operating in the high intensity regime.
However, a serious challenge arising here is that the
strong field regime can bring into existence additional,
intensity-dependent relaxation channels. This may occur,
for example, as a result of one- or multiphoton coupling of
the ‘‘working’’ levels to other states or continuum of
states decaying via dissociation, autoionization, internal
conversion, etc. Whereas much attention was focused
recently on the study of decoherence processes which
are independent of the driving field [5,7], dynamics of
quantum systems in conditions where a loss of coherence
is caused by the driving field itself has not been discussed
so far. The problem is rather general and arises in many
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[8], resonant frequency conversion [9–11], where to create
population inversion or prepare a system with maximum
polarization on a short time scale one needs higher field
intensities. Strong driving fields in turn lead to a decoher-
ence in the system. This brings up the questions: to what
extent can a strong driving field destroy coherence in the
system, and, how to maintain coherence in such a system
for as long a time as possible?

In this Letter we address these questions and show that
under certain conditions the decoherence caused by a
strong driving field can be significantly reduced and
even completely suppressed, and as a result, the system,
initially incoherent, exhibits long living Rabi oscillations.
To get insight into the physics of creating coherence, we
consider a model quantum system in Fig. 1(a). In this sys-
tem, the working transition jgi ! j1i interacts with the
laser field via a multiphoton process, and the coupling of
the upper working level j1i to the rapidly decaying state
j�i models the field-induced relaxation. The model de-
scribes various systems in which strong excitation of the
upper level leads to a population transfer to autoionizing
states [9–14], vibrational quasicontinuum [8], and upper
lying electron subbands in a quantum well [15]. If this
process is sufficiently fast, the system decays before it
executes one Rabi oscillation. The basic idea is that the
coupling of the upper level to the state j�i can be con-
trolled by applying an additional field on the transition
j2i ! j�i. In fact, this leads to a creation of a dark state in
the �-type system formed by states j1i, j2i, and j�i, which
switches off the relaxation channel. As a result, the
system exhibits coherent Rabi oscillations between the
ground state and the bright state formed by a coherent
superposition of states j1i and j2i. Our analysis shows that
such an immunity to decoherence is inherent in many
quantum systems with level splitting or degeneracy,
where the laser field interacts with more than one upper
resonant sublevel simultaneously [Fig. 1(c)], and leads to a
specific propagation dynamics in the medium. We point
out that although the effects discussed here are mediated
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(a) (c)

ω 0 

ω 0 

ω 0 

...

| >g

| >1

| >γ

ω 0

ω 0

ω 0 

...

| >g

| >k

| >γ 

...

γ γ 

∆ω  

ω 1
| >2

(b)
control of
coherence

0,0

0,5

1,0

-2 0 2
time

n
1

po
pu

la
tio

ns

n
g

0,0

0,5

1,0

-2 0 2
time

n
1

n
g

...

FIG. 1. (a) Schematic of a two-level system which decoheres
due to a one-photon coupling to a decaying state j�i. (b) Sup-
pression of the relaxation channel is achieved by applying an
additional field on the transition j2i $ j�i, leading to a dark-
state formation within the system j1i � j�i � j2i. (c) Schematic
of a system with quasidegenerate resonant upper sublevels.
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population trapping, electromagnetically induced trans-
parency (EIT) [12–16]], they represent a different type of
coherent behavior. Unlike the steady-state (adiabatic) in-
teractions in EIT, the response of the quantum system to
the field contains explicit information about its past
states. Note that more complex systems (e.g., three level
� systems) have also been in the focus of many studies,
especially due to the ability of the systems to store not the
energy and the momentum of photons, but their quantum
states (memory for photons [16]). We also note some
analogy between the idea of coupling the rapidly decay-
ing state to an additional state to suppress decoherence in
the two-level systems and the method of stimulated
Raman adiabatic passage in � systems [17].

We begin our analysis with the equations of motion for
the systems shown in Fig. 1. The working transition jgi !
j1i in Fig. 1(a) is characterized by the N-photon Rabi
frequency ��N��t� � ���N�

1g = 	h�E0�t�N , where ��N�
1g is the

N-photon matrix element [10,18]. The relaxation is mod-
eled by a one-photon process j1i ! j�i, since this is the
case of most rapid decay of coherence [14], and control of
coherence is performed by the field E1 at !1 applied on
the transition j2i ! j�i. The corresponding Rabi frequen-
cies are �1� � �d1�= 	h�E0�t� and �2� � �d2�= 	h�E1�t�,
where d1� and d2� are the dipole moments. In our notation
the laser fields (E0 and E1) are taken in the form "j�t� �
Ej�t� exp�i�!jt� ’j�t��	 � c:c: �j � 0; 1�, where Ej�t� is
the real amplitude, !j is the carrier frequency, and ’j�t�
is the phase. Also, by assuming that the state j�i decays
043002-2
with a rate �, we avoid the need for the density matrix
formalism [13,14]. Before proceeding further, we notice
that in the resonant approximation, the equations of mo-
tion for the system in Fig. 1(a) may formally be rewritten
in terms of a system with degenerate upper working levels
as in Fig. 1(c). This is possible if the amplitudes of the two
fields are proportional. Setting E1�t� � s 
 E0�t�, where
s � const, one can formally replace the matrix element
d2� of the transition j2i ! j�i by (s 
 d2�). After that the
equations for the amplitudes may be rewritten in terms of
a degenerate system driven by the field E0, where the
matrix element of the transition jgi ! j2i formally
equals zero. By drawing this analogy, we consider the
equations for the probability amplitudes of the general-
ized system [Fig. 1(c)]:

_aag � i
X
k

��N�
gk ak; (1a)

_aak � i�kgak � i��N�
kg ag � i�k�a�; (1b)

_aa� � i
X
k

��kak � �a�: (1c)

Here ��N�
kg �t� � ���N�

kg = 	h�E
N
0 �t� and �k��t� � �dk�= 	h�E0�t�

are the Rabi frequencies of the N-photon (jgi ! jki) and
one-photon (jki ! j�i) transitions with the matrix ele-
ments ��N�

kg and dk� (which are assumed real), and k � 1;
2; . . . ; K0, where K0 is the number of sublevels. In general,
the detuning �kg of the kth sublevel from the resonance
contains the frequency difference �!kg � �N!0 �!kg�,
the dynamical Stark shift of the levels in the field
�!�k�

St � ��k��g�E
2
0=	h (where �k;g are level polariza-

bilities) and the term (N@’�t�=@t) arising due to time
modulation of the phase [18]. Below we assume that the
sublevels are quasidegenerate (�!kg � 0), which holds
for sufficiently short driving pulses (�p 
 �!kg), and
that the Stark shift is canceled by the phase-modulation
term. In these conditions, the frequency detunings in
Eq. (1b) can be neglected.

Some important properties of the system described by
Eqs. (1a)–(1c) can be established analytically. To do this,
we suppose the linewidth of state j�i to be sufficiently
large compared to the derivative on the left-hand side of
Eq. (1c). This allows the probability amplitude a� to be
eliminated, and then Eqs. (1b) for the amplitudes ak take
the form:

_aa k � i��N�
kg ag �

�k
dk�

 X
k0
d�k0ak0

!
; (2)

where we introduced the golden rule transition probabil-
ity �k � ��2

k�=�� from state jki to state j�i. From Eq. (2)
it follows that concurrent with transitions to the ground
state jgi, each jki state decays with a relaxation rate
determined by a coherent superposition of all the jki
states coupled by the field. To clarify this behavior, we
built up two combinations of the jki states. The first one is
defined as ~aaD :� �

P
kdk�ak�=�

P
kd

2
k��

1=2 and (as will be
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FIG. 2 (color online). Creating of quantum memory in the
system of Fig. 1(a). Parameters of the transitions are such that
in the absence of the control field (E1) the system decays before
executing one Rabi oscillation (�1g � 0:95 and �1� � 2:85 in
units of � � 5:0 ps�1). (a)–(c) Dynamics of the populations of
the ground state jgi, state j1i, and state j2i, correspondingly,
and (d) the dynamics of the ‘‘dark’’ composite state, j~aaDj2, for
different relative values of the control field (s � E1=E0).
Dashed lines: s�1 (�2�� 2:85); solid lines: s� 2 (�2�� 5:7).
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shown below) evolves towards formation of a ‘‘dark’’state
on the transition from the states fjkig to the state j�i,
while the second combination ~aaB :� �

P
k�

�N�
gk ak�=

�
P
k��

�N�
gk 	

2�1=2 is a composite state associated with tran-
sitions between the ground state jgi and the levels fjkig.
By combining Eq. (2) with Eqs. (1a) and (1b), we come to
a closed system of equations for ~aaD, ~aaB, and ag:

_~aa~aaD � i�0� ~��; ~dd�ag � ��~aaD; (3a)

_~aa~aaB � i�0ag � ��� ~��; ~dd�~aaD; (3b)

_aag � i�0~aaB: (3c)

In Eqs. (3) � ~��; ~dd� is a scalar product of two normal-
ized K0-component coupling vectors defined as ~���

���N�
1g ;�

�N�
2g ; . . . ; �=�

P
k��

�N�
kg 	

2�1=2 and ~dd� �d1�;d2�; . . . ; �=

�
P
kd

2
k��

1=2, �0 � �
P
k��

�N�
kg 	

2�1=2EN0 = 	h is the Rabi fre-
quency of the system in the absence of the relaxation
channel, and �� �

P
k�k is the net relaxation rate.

Dynamics of the system (3) can be fully characterized
by its characteristic frequencies. On the assumption that
the driving field amplitude is constant, the system can be
reduced to one third-order differential equation, whose
characteristic frequencies are found from the algebraic
equation:

i�3 � ���
2 � i�2

0�� ���
2
0�1� � ~��; ~dd�2	 � 0: (4)

A key role of collective effects in the evolution of the
system becomes apparent if we compare the case of a
single upper working level with that of multiple upper
sublevels. In the case of K0 � 1, the value of � ~��; ~dd�2 in
Eq. (4) is unity, and Eq. (4) reduces to the common
equation of damped oscillations: �2 � i�1���2

0 � 0.
With the increase of �1, coherence in the system progres-
sively decreases, and for �1=2 > �0 the system shows an
aperiodic behavior, suggesting a complete loss of coher-
ence. However, when K0 > 1, dynamics of the system is
qualitatively different. Surprisingly, the increase of re-
laxation does not lead to a faster decay, but, in contrast,
enhances coherence. This collective property of the sys-
tem can be established by examining Eq. (4) in the limit
of large ��, in which the characteristic frequency of the
system can be sought in the form of expansion � �
��0� ���1� � 
 
 
 with a small parameter ��0=��� 
 1.
We find that in this limit the system exhibits damped Rabi
oscillations with the frequency and the relaxation rate
determined by

� � �0

������������������������
1� � ~��; ~dd�2

q
; � �

1

2

�2
0

��
� ~��; ~dd�2: (5)

The above expressions are the main result of our analysis.
As follows from Eqs. (5), the collective decay rate � is
inversely proportional to the net relaxation rate of the
upper sublevels, and in the limit ��0=��� 
 1 is much
smaller than the collective Rabi frequency �. The coher-
ent behavior results from the transformation of the com-
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bined state ~aaD into a dark state. Indeed, in the limit
�� � �0 the amplitude of the combined state in
Eq. (3a) ~aaD � 0. According to Eq. (1c), this suggests a
suppression of population transfer to the state j�i. In this
regime the upper levels execute the same quantum me-
chanical motion: for a rectangular driving field applied at
a moment t � 0 we find that the amplitudes are given by
ag � cos��t� and

ak � i
�� ~���k � � ~dd�k� ~��; ~dd�	������������������������

1� � ~��; ~dd�2
q sin��t�;

where � ~���k and � ~dd�k are the kth components of the cou-
pling vectors � ~��� and � ~dd�.

Using Eqs. (5), we can readily determine the corre-
sponding characteristics of the system shown in Fig. 1(a).
In particular, in the case of a one-photon transition jgi !
j1i, we have

� � �1g

����������������������������������
1�

d 2
1�

d 2
1� � s2d 2

2�

vuut ; � �
�
2

�2
1gd

2
1�

�d 2
1� � s2d 2

2��
2 ;

(6)

where s is the above introduced ratio of the field ampli-
tudes s � E1=E0. As follows from (6), with an increase of
the control field E1 the frequency trends to �1g, while the
relaxation rate rapidly drops, and in the limit s! 1
formally approaches zero. The above analysis does not
answer the question what happens to the system during
turning on the fields. To answer it we solved the exact
043002-3
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FIG. 3 (color online). Snapshots of a laser pulse in a resonant
absorber in (a) of only one, and (b) two upper resonant sub-
levels coupled to continuum, at different propagation lengths
�L. Also shown is the dynamics of the populations at �L �
200. The length is given in units of inverse absorption co-
efficient (� � 2�!0�2

1gN �p=c 	h, where N is the atomic
density, �p is the input pulse duration). The input parameters:
�p � 1 ps, IPeak � 1011 W=cm2, (a) �1g � 0:95, �1� � 2:85;
(b) �1g � 0:95, �2g � 0:31, �1� � 2:85, and �2� � 5:7 (in
units of � � 5:0 ps�1).
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Eqs. (1a)–(1c) numerically. We assumed that the field am-
plitudes E0 and E1 were proportional and both have a
steplike temporal profile. The results in Fig. 2 evidence
that there exists a ‘‘preparation’’ stage during which the
upper levels are populated, thus enabling creation of
the dark state [Fig. 2(d)]. Once the dark state is formed,
the system turns to the regime of regular slowly damped
Rabi oscillations [Fig. 2(c)], where the two upper states
build up a coherent superposition that is immune to the
photoabsorption. An increase of the amplitude of the con-
trol field E1 leads to a shorter preparation stage, a higher
oscillation frequency, and a longer decoherence time
(Fig. 2, solid lines), in accordance with the formulas (6).

The effect of induced coherence raises the interesting
question of the existence of related phenomena in pulse
propagation. Here we will discuss these effects for quasi-
degenerate systems as in Fig. 1(c). By solving Eqs. (1a)–
(1c) self-consistently with the Maxwell equations for the
field, we studied propagation of a short laser pulse in two
situations. In the first one, a ps-laser pulse interacts with
only one upper resonant level coupled to continuum, and,
as one would expect, experiences a strong attenuation in
the medium [Fig. 3(a)]. In the situation shown in Fig. 3(b),
there are two closely lying upper resonant sublevels
which are excited by the laser field simultaneously (as it
takes place, for example, in excitation of the doublet 4s
2S1=2 ! f5p 2P1=2; 5p

2P3=2g of atomic potassium [8]).
The coupling of the levels via continuum immediately
leads to the collective behavior resulting in creating co-
herence in the system. The pulse is seen to break up into
two subpulses in perfect analogy to a 4� pulse in a
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coherent absorber [19]. Unlike the classical self-induced
transparency (SIT), the pulse ‘‘area’’ is now given by ! �

	h�1
���������������������������������������������������������������������
��1gd2� ��2gd1��

2=�d 2
1� � d 2

2��
q R

1
�1 E0�t�dt. In

fact, the dynamics represents a nontrivial example of
SIT mediated by EIT, where a lossless coherent propaga-
tion arises as a result of interference suppression of the
relaxation channel.

In conclusion, we have shown how coherence in an
optically driven quantum system can be effectively con-
trolled in conditions where phase relaxation is caused
by the laser field itself. The proposed mechanism of
preserving quantum memory based on the dark state
formation seems to be rather general and may exist in
different systems with degeneracy and level splitting. It
may be interesting not only for quantum control and
coherence control, but also for diverse nonlinear optical
processes in the UV and VUV region, where coupling to
autoionizing states and ionization continuum is typically
involved in the interaction and can strongly affect reso-
nant frequency mixing [9,11] and harmonic generation
[10]. By using an appropriate superposition of upper
resonant sublevels, decoherence in the system can be
considerably reduced, thus allowing one to achieve a
higher conversion efficiency.
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