
P H Y S I C A L R E V I E W L E T T E R S week ending
30 JANUARY 2004VOLUME 92, NUMBER 4
Klein Paradox in Spatial and Temporal Resolution
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Based on spatially and temporally resolved numerical solutions to the relativistic quantum field
equations, we provide a resolution to the controversial issue of how an incoming electron scatters off a
supercritical potential step and how the electron-positron pair production is affected by this collision.
The treatment of the problem as a correlated three-particle problem suggests revealing insight into
the process.
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knowledge, not been adequately addressed. A time-
[4] the transmission coefficient in the corresponding
single-particle formalism as a function of the energy E:
Relativistic quantum field theory is regarded as one of
the most accurate descriptions of nature. The prediction
of the anomalous electron spin by this theory has, for
instance, been experimentally confirmed with unprece-
dented accuracy. The Dirac equation without second
quantization, in contrast, is known to lead to interpreta-
tional problems when applied to processes in which a
single-particle interpretation is inadequate. The best-
known example of a paradoxical outcome is the so-called
‘‘Klein paradox’’ [1] describing a nonvanishing transmis-
sion of an incoming electron as it scatters off an electro-
static potential step whose height is much larger than the
electron’s kinetic energy. The Schrödinger equation as
well as classical mechanical theories for this scattering
predicts a complete reflection for the electron. Since then
many works have been published to ‘‘resolve’’ the Klein
paradox. Some of these works are not fully consistent
with each other. In this Letter, we analyze the Klein
process in full time resolution based on the Dirac quan-
tum field equation.

As the analysis in the field formulation of the problem
is very challenging, several works have resorted to the
single-particle Dirac wave function solutions without
second quantization. In this restricted framework the
time evolution operator of the single-particle wave func-
tion is unitary and as a result the reflection coefficient
cannot be greater than 1, in contrast to some previous
claims. This fact is also consistent with time-resolved
wave-packet calculations [2]. What makes the matter
more confusing is that the transmission coefficient calcu-
lated from the single-particle wave function turns out to
match the steady state pair-production rate of the poten-
tial step in the absence of any incoming electron [3].

Most treatments of the Klein paradox within the
framework of field theory omit the effect due to the
incoming electron and focus on the steady state electron-
positron pair-production rate from the supercritical po-
tential. Several important questions concerning how the
scattering of the incoming electron is affected by the pair
production as well as how the pair-production rates are
affected by the incoming electrons have, to the best of our
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resolved analysis is thus the natural way to approach the
problem.

In this Letter we comment on these challenges. Our
results are derived from correlated three-particle wave
functions that were constructed numerically from the
corresponding time-dependent quantum field. We show
analytically and confirm numerically how the pair-
production rate gets modified during those times when
the incoming electron wave packet overlaps spatially with
the potential barrier.

The time evolution of the field can be expressed in
terms of the electron annihilation and positron creation
operators as �̂��x; t� � �pb̂bpWp�x; t� � �nd̂d

y
nWn�x; t�,

where the term �p�n� � � � denotes the summation (integra-
tion) over all states with positive (negative) energy. The
functions Wp�n��x; t� � hx j Wp�n��t�i denote the solutions
to the time-dependent Dirac equation under the initial
condition Wp�n��x; t � 0� � Wp�n��x�, where Wp�n��x� is an
energy eigenfunction. In previous studies we have shown
that the Dirac equation can be solved numerically for
arbitrary initial states on a space-time grid using a third-
or fifth-order FFT-based split operator algorithm [2].
Using the complete set of solutions Wp�n��x; t�, the field
operator can be constructed. The time dependence of the
corresponding Fermion operators may be written as

b̂bp�t� ��p0 b̂bp0 hWp j Wp0 �t�i ��n0 d̂d
y
n0 hWp j Wn0 �t�i; (1a)

d̂dyn �t� ��p0 b̂bp0 hWn j Wp0 �t�i � �n0 d̂d
y
n0 hWn j Wn0 �t�i: (1b)

The only time dependence is contained in the matrix
elements which are denoted by hWp j Wn�t�i � Upn�t�,
etc., for convenience in the following discussion.

The Dirac-Hamiltonian for this problem is given
(in atomic units) by H�t� � c� � p� 
mc2 � V�x���t�,
where � and 
 are the usual 4� 4 Dirac matrices, and
��t� denotes the Heaviside unit step function. As a poten-
tial of height V0 and width W we choose V�x� �
0:5V0
1� tanh�x=w��. Using plane waves one can find
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T�E� � �
sinh��kW� sinh���W�

sinh
��V0=c� k� ��W=2� sinh
��V0=c� k� ��W=2�
; (2)

����������������������������������������p

where k � 
�E� V0�

2 � c4�=c and � �
�

�������������������������

E2 � c4�=c

p
.

In order to better judge the impact of the incoming
electron let us first comment on the pair-production
process associated exclusively with a supercritical
potential without the incoming electron. Using the opera-
tor solutions Eq. (1) we can compute numerically the total
electron population �ph0kb̂b

y
p�t�b̂bp�t�k0i � �p�njUpn�t�j

2

as a function of time. The results for three potential
strengths V0 are displayed in Fig. 1. The early time
regime (t & 1=c2 � 0:5� 10�4 a:u:) is followed by a lin-
ear growth regime characterized by a constant rate. This
rate becomes zero if the potential is subcritical, i.e., V0 �
2c2. Incidentally, for V0 > 2c2 the pair-production rate in
the long-time limit is directly related to the transmission
coefficient (2) via

R
dE T�E�=�2��. This relationship is

remarkable as T�E� was derived for a completely different
physical situation and from a theory that was not even
second quantized.

What is noteworthy from Fig. 1 is that for a subcritical
potential the pair-production probability does not totally
vanish. It is also interesting that after the transient time
FIG. 1. The electron population N�t� � �ph0kb̂b
y
p�t�b̂bp�t�k0i

from potentials with three different heights V0 as a function
of time. (V0 � 2c2 � 0:53c2, 2c2, 2c2 � 0:53c2, W � 0:3=c).
The dashed line of the inset (for V0 � 2c2 � 0:53c2) shows the
reduction of the pair production due to an incoming electron
scattering off the potential at t � 2� 10�3 a:u:
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the probability can actually decrease for subcritical po-
tentials, which can be interpreted as a temporary pair-
annihilation process until the pair-production rate levels
to zero. The probability grows initially quadratically
in time.

The pair-production process can also be analyzed
via the corresponding time-dependent energy spectrum
of the emitted electron, defined as P�E; t� �
h0kb̂byp�t�b̂bp�t�k0i � �njUpn�t�j

2. Figure 2 shows that at
early stages P�E; t� decreases monotonically as a function
of energy. As time progresses, more energy close to V0=2
is generated. In the steady state regime, the energy spec-
trum would grow linearly in time, in agreement with the
analytical expression P�E; t� � T�E�t=�2�� shown by the
circles for t � 53:2� 10�4 a:u: Here T�E� is again iden-
tical to the transmission coefficient (2).

Let us now bring the incoming electron into the
discussion. We assume that initially the electron is local-
ized and described by a coherent superposition of energy
eigenstates, ��x; t � 0� � �pCpWp�x�, such that its ini-
tial center is at position x0 (<0). The corresponding
electron and positron populations can be calculated:
�ph��t � 0�kb̂byp�t�b̂bp�t�k��t � 0�i � 1� �n�pjUpn�t�j2 � �nj�pCpUnp�t�j2; (3a)

�nh��t � 0�kd̂dyn �t�d̂dn�t�k��t � 0�i ��n�pjUpn�t�j2 � �nj�pCpUnp�t�j2: (3b)
Each term in Eq. (3) has an important interpretation. The
number 1 in (3a) describes the incoming electron while
the term �n�pjUpn�t�j

2 is associated with the pair pro-
duction in the absence of any incoming electron as we
derived above. The last term is always negative and there-
fore decreases the pair production. We should point out
that this finding contradicts the conclusions made in
several works where the incoming electron was noted to
‘‘knock out’’ electrons from the barrier [5] or to ‘‘stimu-
late’’ [6] pair production. We have found a clear re-
duction instead of the suggested enhancement of the
pair-production rate.

The suppression of pair production observed here,
however, affects only a positron whose spin is antiparallel
FIG. 2. The electron spectrum P�E; t� generated by a super-
critical potential at various times as a function of the energy E.
The times are t � 1:33, 13.3, 26.6, 39.9, and 53:2� 10�4 a:u:
The long-time spectrum is compared with the analytical ex-
pression T�E�t=�2�� as indicated by the circles for t � 53:2�
10�4 a:u: (V0 � 2c2 � 0:53c2, W � 0:3=c).
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to that of the incoming electron. As the pair-production
process preserves the total spin (�0) and the electron and
positron created during the pair production have opposite
spins, one could be tempted to associate this suppression
in the pair production with the Pauli exclusion principle
which restricts the generation of an electron into a state
that is already occupied by the incoming electron [7].
However, as it turns out, the situation is much more
complicated as the amount of the suppression does de-
pend crucially on the precise phase relationship among
the complex superposition amplitudes Cp and not simply
040406-3
on the state occupation probability jCpj
2. In fact, the

magnitude of the pair-production rate suppression de-
pends on time. Analyzing the last term in Eq. (3b) for
an incoming wave packet one can show that the rate is
suppressed only at those times when the wave packet
overlaps spatially with the potential barrier.

In order to simulate how the pair production is sup-
pressed as a function of time, a large scale numerical
simulation of the field equations is necessary which re-
quires several CPU days on a supercomputer. Using the
numerical solution of the field operator �̂� we have com-
puted the three-particle wave function according to
��x1; x2; y; t� � h0k�̂�����x1; t��̂�
����x2; t��̂�

���
c �y; t�k��t � 0�i=

���
2

p
; (4)
FIG. 3. Temporal snapshot of the positron’s spatial probability
distribution obtained from the three-particle wave function.
The electron spatial distribution is left out for graphical clarity;
for a complete animation, see [10]. The minimum at x �
0:15 a:u: is the result due to the pair-production suppression
at earlier times when the incoming electron collided with the
potential. For comparison we also show the density (open and
closed circles) corresponding to the reflected and ‘‘transmit-
ted’’ wave packet obtained from an independent single-particle
calculation. The dashed line shows the corresponding positron
density without any incoming electron. (The average kinetic
energy of the incoming electron is 5000 a.u. and its width �x is
0.03 a.u., V0 � 2c2 � 0:53c2, W � 0:3=c, x0 � �0:2 a:u:, with
a snapshot taken at time t � 43:9� 10�4 a:u:.)
where the subscript c denotes the charge conjugation and
the superscript (�) denotes the positive frequency part
[8]. This wave function is a 4� 4� 4 spinor and de-
scribes in spatial and temporal resolution how the incom-
ing Gaussian wave packet scatters off the potential which
due to its supercriticality can also emit an electron-
positron pair. With the exception of very early times,
the emitted electron associated with the pair evolves to
the left, whereas the positron created evolves to the right.
Before the electron wave packet can reach the potential,
the pair-production process is unaffected by the distant
incoming electron. During the time interval when the
electron wave packet overlaps with the potential, how-
ever, the pair-production process is suppressed. This was
also indicated in the inset of Fig. 1.

This effect is shown in spatial resolution in Fig. 3.
Graphed in the figure are the reflected electron density
�e�x; t� and the positron density �p�y; t� at a given time,
after the electron has completely scattered from the
potential. The density �e�x; t� was obtained by integrat-
ing the absolute value square of the three-particle spinor
state over all spatial as well as spin degrees of freedom
except for the electron’s coordinate x. The positron den-
sity �p�y; t� results from a similar integration over all
electronic degrees of freedom.

For comparison we have included with the dashed line
the corresponding positron density obtained from a cal-
culation without any incoming electron. The comparison
clearly shows the existence of a positron ‘‘hole’’ around
y � 0:15 a:u: reflecting the lack of positron production at
earlier times when the incoming electron wave packet
scattered off the potential.

To connect these findings with previous calculations,
we have indicated by the dotted line the transmitted part
of the wave packet obtained from a solution of the non-
quantized single-particle Dirac equation. Quite remark-
ably, this transmitted part presents exactly the missing
portion of the positron density due to the incoming
electron.

As the electron created during the pair-production
process and the reflected electron are indistinguishable
from each other, we believe an interpretation of the pro-
cess based on electron labeling is not straightforward. We
therefore cannot comment on whether 100% of the in-
coming electron is reflected or whether part of the in-
coming electron is used to annihilate a newly generated
positron such that the remaining electron (created by the
potential) would contribute to the outgoing electron flux.

We finish with another observation. If one computes the
single-electron wave function from the quantum field
operator according to  �x; t� � h0k�̂�����x; t�k �t � 0�i,
the time evolution operator for  �x; t� is not unitary, in
fact there is no electron transmission into the barrier and
040406-3
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the norm of the reflected electron is less than the incom-
ing electron. In other words, the missing amount that has
been associated with the ‘‘Klein tunneling’’ [9] is simply
removed from the single-electron wave function if com-
puted strictly from the quantum field.

In conclusion, we have reported for the first time on
space-time resolved data for the Klein paradox as a three-
particle problem. Analytical derivations suggest that the
incoming electron suppresses the pair production. This
finding contradicts previous studies noting a reflection
coefficient larger than 1 and claiming that pair produc-
tion is triggered by the incoming electron. In addition, our
numerical time-resolved calculations [10] suggest that
this suppression happens only when the incoming elec-
tron’s spatial density overlaps with the potential region.
Finally, the ‘‘transmitted portion’’ of the wave packet
under the barrier obtained from a nonquantized single-
particle treatment of the problem corresponds precisely to
the amount by which the positron’s spatial density is
reduced by the incoming electron.

We acknowledge helpful discussions with R. E. Wagner
and S. Hassani. This work has been supported by the NSF
under Grant No. PHY-0139596. We also acknowledge
040406-4
support from the Cottrell Science Awards Program of
the Research Corporation, ISU for URGs, and NCSA
for supercomputing resources.
[1] O. Klein, Z. Phys. 53, 157 (1929); 41, 407 (1927).
[2] J.W. Braun, Q. Su, and R. Grobe, Phys. Rev. A 59, 604

(1999).
[3] A. Hansen and F. Ravndal, Phys. Scr. 23, 1036 (1981).
[4] F. Sauter, Z. Phys. 69, 742 (1931); 73, 547 ( 1931).
[5] W. Greiner, B. Müller, and J. Rafelski, Quantum

Electrodynamics of Strong Fields (Springer-Verlag,
Berlin, 1985), p. 120.

[6] N. Nitta, T. Kudo, and H. Minowa, Am. J. Phys. 67, 966
(1999).

[7] B. R. Holstein, Am. J. Phys. 66, 507 (1998).
[8] S. S. Schweber, An Introduction to Relavistic Quantum

Field Theory (Harper & Row, New York, 1962).
[9] N. Dombey and A. Calogeracos, Phys. Rep. 315, 41

(1999).
[10] For a computer movie of the time evolution, see

www.phy.ilstu.edu/ILP/movies
040406-4


