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In this Letter, we reveal a new dynamical phenomenon, called “spatiotemporal resonance,” which is
expected to take place in a broad range of viscous, periodically forced, open systems. The observation
originates from a numerical and theoretical analysis of a micromixer, and is supported by preliminary
experimental observations. The theoretical model nicely matches the numerical results, which again is
supported by the experiment. Because of the general nature of the phenomenon, this phenomenon is not
limited to microsystems. Because of the resonances, a slight tuning of the control parameters makes the
mixer enhance the mixing, or suppress it, enhancing interfacial diffusion instead.
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Mixing of fluids on a microscale is a nontrivial prob-
lem: The reason is that microfluid flows are governed by
low or extremely low Reynolds numbers, ruling out hy-
drodynamic instabilities and turbulence. As a conse-
quence, diffusion plays a dominant role and, in practice,
this leads to long mixing times often incompatible with
the expectation that miniaturization favors fast dynamics
[1]. Nonchaotic mixers, taking advantage of Taylor-Aris
(axial) dispersion enhancement, have been proposed [2],
but faster mixing rates can be expected using the idea of
laminar mixing or chaotic advection, developed by sev-
eral groups [3,4].

This Letter concerns the numerical and theoretical
analysis of a simple micromixer [5] from now on called
“the mixer.” It produces an active mixing since the flow
field comes from an external source [6—8], in contrast to
passive mixing, where the flow field is produced intrinsi-
cally due to the detailed geometry of the channel [9,10].

The resonance phenomenon presented here depends on
a few necessary conditions in which the flow geometry
and forcing have to fulfill some spatial and temporal
symmetries and the flow has to be creeping, i.e., viscosity
dominated. As none of these conditions are restricted to
microfluidics, we assume that these resonances may be of
interest to the whole fluid-dynamical society and not just
to the field of microfluidics.

The purpose of the present Letter is twofold: both to
give the theoretical basis for working with and developing
active mixers and to report on the discovery of ‘“spatio-
temporal resonance,” which to the best of our knowledge
has not been noticed before.

The mixer consists of two microchannels of width L
meeting in a cross, as shown in Fig. 1. Here, a main steady
flow of velocity V and consisting of two fluid layers
approaches the cross from the left channel, forming a
straight interface between the fluids. Without any trans-
verse flow, the interface will continue unaffected through
the cross, but once a transverse flow is established it
perturbs the shape of the interface. In the case we con-
sider, the transverse flow changes periodically in time,
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modulated by the oscillating function: f(f) = A cosw ¢
with amplitude velocity A and angular velocity w.

Because of the very low Reynolds numbers, we work
with creeping flows, and the flow problem in the mixer
becomes linear. This makes it possible to get the periodic
flow field by superimposing a constant mean flow of
velocity V with a periodical transverse flow of velocity
Acosw t.

In the experimental setup, we use wide narrow chan-
nels, which is best modeled by a three-dimensional (3D)
creeping flow, but in order to cope with the theoretical
and numerical work, we restrict the model to two-
dimensional (2D) creeping flow, in reality corresponding
to infinitely deep channels, which give rise to parabolic
velocity profiles across straight channels. Despite this
difference between model and experiment, we observe a
nice agreement, as shown later.

With these assumptions and introducing the following
nondimensional control parameters,

7
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FIG. 1. Schematic setup of the mixer with the characteristic
quantities and axes.
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a=— O=w-— (1)
one obtains the dimensionless governing equations for
the mixer in the following form:

dX/dt=Vy + f(t)- Vs, f() = acosQt,  (2)

where VM(‘_/)T) corresponds to pure main (transverse)
flows with maximal velocity equal to unity in channels
of unit width. We let these equations, which describe
simple passive advection, completely determine the state
and dynamics of the mixer.

Generally assuming a no-slip condition at the channel
wall boundaries and open flow at the channel inlets/
outlets, the 2D creeping flow gives rise to a parabolic
velocity profile far from the cross junction, but in order
to obtain the nontrivial flow field at the junction we solve
the full 2D Navier-Stokes equations in the geometry of
Fig. 1 for very low Reynolds numbers [11]. All computa-
tions were done on a single Apple PowerBook G4 using
IDL [13] both for simulation and presentation.

To describe the interface dynamics from the full time-
varying flow field, we numerically calculate the deforma-
tion of a material line (demarcation line) entering the
cross section. This is done by releasing a dense string of
interface points, at a constant rate, from a fixed position
far upstream at the middle of the left channel, and ad-
vecting them passively by the flow, using linear interpo-
lation to calculate subgrid velocities.

From inspection of the results, we observe the general
behavior that the folding increases as the amplitude «
increases and the angular velocity () decreases. Figure 2
shows a collection of snapshots of the interface across the
mixer for different control parameters, where 2(a) shows
very weak perturbation of the interface as ()} > «, while
violent folding is shown in 2(b) with ) < «. Beside this
common trend, strong variation in folding can occur
within a small region of the control-parameter space as
shown in 2(c)—2(e): The state of poor folding 2(d) exists
in between states of better folding 2(c) and 2(e).

This indicates a more complex dependence on the con-
trol parameters, which will be the concern of the rest of
the Letter. It will turn out that bands of poor folding enter
into regions of otherwise strong folding, and we will
denote these band resonances as justified later.

In order to investigate the resonances more thoroughly,
we make a detailed scan of the parameter space, where
the folding of each state is quantified. To construct such a
quantity we note the following.

First, because of the periodic nature of the problem, we
only need to analyze an interface segment released during
one forcing period. Second, we compensate for the con-
tinuous distortion of the interface segment due to the
parabolic velocity profile before further analysis.

A quantity strongly related to the amount of folding of
a segment is its arclength, denoted L,, which is normal-

038301-2

(a) « 3.50 (b) @ 7.00
Q: 10.50 Q: 450

[

(c) a: 585 (d) a: 4.85
Q: 5.33 Q533

) T

(e) a: 3.85
0 5.33

—V S

FIG. 2. Example of interface snapshots for different control
parameters: (a)/(b), poor/strong mixing; (c)—(e), strong local
variations in mixing efficiency.

ized by the length of a reference curve of similar size.
Letting the horizontal (vertical) extend of the segment be
dx(dy), and looking for the shortest periodic curve
bounded by dx, dy, we end up using a sawtooth curve
for reference, as shown in Fig. 3. Denoting the arclength
of the reference curve L,, we define the folding quantity:

L
— Lfa _ ; S ) 2
F= L 1, with L, dx* + 4 dy*. 3)

With no perturbation the interface segment becomes a
horizontal line, making F = 0 and from there increasing
with the complexity of the folding [14].

The folding quantity F has been mapped through a re-
gion of the parameter space and is shown as a contour plot
in Fig. 4 with contours increasing in logarithmic steps,

FIG. 3. [Illustration of how to define the folding quantity F.
Solid curve is the interface segment; dashed curve is the
reference curve, and dx, dy denotes their extend.
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filled with a darkening gray scale proportional to logF for
1073 = F ==~ 4.64. In Fig. 4, one clearly sees resonances
(light) penetrating into regions of good mixing (dark),
and the five squares correspond to the interfaces shown in
Fig. 2, which confirms the poor mixing seen in Fig. 2(d)
as it is positioned on a resonance. In Fig. 4, it should be
emphasized that F = 0 on the line a = 0.

It turns out that the resonances can be explained and
modeled using general properties of the mixer.

The nature of the resonances is explained as follows: A
resonance of inefficient mixing occurs when the pertur-
bation of a point on the interface during the first half of
the mixing region is completely reversed during the last
part, resulting in vanishing net perturbation.

A necessary condition in order to obtain resonances is
a y symmetry of the flow geometry at the crossing, and a
2r-periodic forcing function f(¢), which is odd at ¢ =
7/2: fl—(¢ — 7/2)] = —f(¢ — 7/2). With these con-
ditions, the resonances depend only on the two natural
time scales of the mixer, which are needed to reverse the
forcing at the middle of the channel: the period of the
forcing Tp = 277/}, and the advection time T, of a point
on the interface through the active mixing region.

The explanation of the resonances gives the following
relation between the characteristic time scales:

T, = C,Tp, where C, = n + 1, neN, @)

where C, comes as the perturbation has to change an odd
number of half phases during the passing of the interface
point: C, = 2n +1)/2 =n + 1.

Equation (4) has been justified numerically by comput-
ing trajectories of interface points, and it also justifies the
term ‘“‘resonance’ as it relates two time scales. It further
shows that the main theoretical goal is to estimate 74 as a
function of the forcing parameters (), «, as done in the
following.
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FIG. 4. Contour plot of the folding quantity F as a function of
the control parameters (), «. Points for each measurement of F;
squares for states shown in Fig. 2; solid curves for theoretical
resonances predicted by Eq. (9).
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We begin by modeling a simplified flow field using
Eqg. (2) and, when neglecting the small side-way contri-
butions to the pure velocity fields, we separate the advec-
tion into coordinates [V, = (V) ., Vi) etc]:

dx

— = VM,x(y):

dy _
0 i f(@®) Vry(x). (5)

From the initial condition y(0) = 0, and assuming slow
variations of x(z) compared to y(r), we get y(x, t) =
V5, (x) F(t), F(t) = &sin{)t, and when inserted into the
first part of Eq. (5) we get the dynamics of x:

& = V) = ViV 0OF 0L ©
which will be used to determine 7,. Even though the
assumption of a slowly varying x(r) holds for high «,
numerical integrations of Eqgs. (5) and (6) show similar
dynamics of x(f) even for small «, which remains a
puzzle to the authors.

In the main channel the parabolic velocity profile is
given simply by V; .(y) = 1 — 4y, but at the crossing the
flow broadens and we introduce profiles rescaled by a
width factor b, (b > 1):

1 4y? 1 4x?

i =5 (1-35 ) v =3(1-5)
The width factor also defines the active mixing region
which extends b/2 into both channels from the center of
the crossing, giving the initial condition for the solution
of Eq. (6): [x(0), y(0)] = [~b/2,0].

Inserting Eq. (7) into Eq. (6), we approximate
[1 — (4x?)/b?] with a constant function of equal integral
in the range of x € [—b/2, b/2], and thereby having the
constant value of I' = 8/15. The evolution of x now
becomes

2 2
- %)4‘ %smzm —b/2.  (8)
Because of the resonances relation given by Eq. (4), an
interface point has to pass through the active mixing
region in a specific time (T, = C, Tp) and this gives the
resonance condition on x(¢): x(C,Tp)=b/2,n € N.
Inserting this into Eq. (8), we finally get the relation
between « and () in order for resonances to occur:

Aﬂ=£@

2
b’ ) neN. (9

15
=00 (1 ———+
« \/16( 27T(I’l+%)

The only undetermined parameter left is the width
factor b, and since it is related to the flow field we can
estimate it a priori by measuring the decrease of the
midchannel velocity across the cross region:

1
b= < > =~ 1.239, (10)
Vux [ xe[-1,11y=0
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FIG. 5. Indication of an experimental second resonance
state (a) compared to similar numerical state (b).

where (-) denotes averaging in a range defined by the
subscript.

The theoretical prediction of the resonances is shown in
Fig. 4 as the thick solid curves. The theoretical model
nicely captures the shape of the measured resonances, and
despite the first two resonances a quantitative agreement
is also found.

The experimental verification of the spatiotemporal
resonances is still at an early stage, which excludes a
quantitative comparison with the numerical/theoretical
results. Still, indications of resonant states have been
found experimentally, and are compared with the numer-
ics in Fig. 5. The experimental microsystem was made
in poly(dimethyl siloxane) (PDMS) using two-level soft
lithography technology [15]. All channels are 200 um
wide and 26 wm high, and the solution consists of
46% glycerol and 54% water, where the upper part
was been dyed by fluorescein in a 1 mM concentration.
The mean flow rate through the main channel was
0.5 uL/min, and a more detailed description of the ex-
periment is given in [16].

The resonances, which now have been observed nu-
merically, indicated experimentally, and predicted theo-
retically, completely control the behavior of the mixer
(i.e., the regions of strong and poor mixing in the pa-
rameter space), and from this information the optimal
mixing configuration is achievable. This analysis, on the
other hand, also gives the unexpected ability to use the
mixer to enhance particle separation: The reason is that,
when tuning the mixer at a resonance, the simple shape of
the interface is unchanged, while the interfacial diffusion
is enhanced due to the folding and subsequential unfold-
ing of the interface. This effect is clearly seen in Fig. 5(a),
where the interfacial diffusion on the right side is greatly
enhanced compared to the left side. Finally, the original
work of Taylor and more recent work of Dutta and
Chevray [17] point out that diffusion across an interface
plays an important role in particle separation. At present,
particle separators working by diffusion exist [18], which
will benefit directly from the mixer tuned at a resonance.

In conclusion we reveal, through numerical and theo-
retical work, the complete behavior and response of a
simple micromixing system as a function of its two non-
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dimensionalized control parameters. The efficiency of
mixing is strongly influenced by a resonance effect,
which is observed experimentally, and arises due to an
interplay between characteristic time scales and symme-
tries of the mixer. The good agreement between the
predicted and measured resonances justifies the use of
the simplified flow field in the estimation of 7, and it
especially supports the explanation of resonance, leading
to the resonance relation Eq. (4).

We would like to thank Arash Dodge and Marie-
Caroline Jullien from MMN-ESPCI for fruitful discus-
sions and access to the experimental results.
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