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We perform a first principles calculation of the anomalous Hall effect in ferromagnetic bcc Fe. Our
theory identifies an intrinsic contribution to the anomalous Hall conductivity and relates it to the
k-space Berry phase of occupied Bloch states. This dc conductivity has the same origin as the well-
known magneto-optical effect, and our result accounts for experimental measurement on Fe crystals

with no adjustable parameters.
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In ferromagnets the Hall resistivity, py, exhibits an
anomalous contribution proportional to the magnetization
of the material, in addition to the ordinary contribution
proportional to the applied magnetic field, py = RyB +
R47wM [1-3]. The anomalous Hall effect (AHE) has
played an important role in the investigation and charac-
terization of itinerant electron ferromagnets because R; is
usually at least one order of magnitude larger than the
ordinary constant R,. Although the effect has been rec-
ognized for more than a century [2], it is still somewhat
poorly understood, a circumstance reflected by the con-
troversial and sometimes confusing literature on the sub-
ject. Previous theoretical work has failed to explain the
magnitude of the observed effect even in well understood
materials like Fe [4].

Karplus and Luttinger [5] pioneered the theoretical
investigation of this effect, by showing how spin-orbit
coupling in Bloch bands can give rise to an anomalous
Hall conductivity (AHC) in a perfect ferromagnetic crys-
tal. This conclusion was questioned by Smit [6], who
argued that R; must vanish in a periodic lattice. Smit
proposed an alternative mechanism, skew scattering, in
which spin-orbit coupling causes spin polarized electrons
to be scattered preferentially to one side by impurities.
The skew-scattering mechanism predicts an anomalous
Hall resistivity linearly proportional to the longitudinal
resistivity; this is in accord with experiment in some
cases, but an approximately quadratic proportionality is
more common. Later, Berger [7] proposed yet another
mechanism, the side jump, in which the trajectories of
scattered electrons shift to one side at impurity sites
because of spin-orbit coupling. The side jump mechanism
does predict a quadratic dependence of the AHC on the
longitudinal resistivity. However, because of inevitable
difficulties in modeling impurity scattering in real ma-
terials, it has not been possible to compare quantitatively
with experiment. It appears to us that the AHE has gen-
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erally been regarded as an extrinsic effect due solely to
impurity scattering, even though this notion has never
been critically tested, and that the intrinsic contribution
initially proposed by Karplus and Luttinger has been
discounted.

Several years ago, the scattering free contribution of
Karplus and Luttinger was rederived in a semiclassical
framework of wave packet motion in Bloch bands by
taking into account Berry phase effects [8,9]. According
to this work, there is an AHC purely from the equilibrium
distribution given by the sum of Berry curvatures [see
Egs. (2) and (6) below] of the occupied Bloch states [10].
Recently, Jungwirth et al. [11,12] applied this picture of
the AHE to (III, Mn)V ferromagnetic semiconductors and
found very good agreement with experiment. (III, Mn)V
ferromagnets are unusual, however, because they are
strongly disordered and have extremely strong spin-orbit
interactions. In this Letter, we report on an evaluation of
the intrinsic AHC in a classic transition metal ferromag-
net, bcc Fe. Our calculation is based on spin-density
functional theory and the linearized augmented plane
wave method. The close agreement between theory and
experiment that we find leads us to conclude that the AHC
in transition metal ferromagnets is intrinsic in origin,
except possibly at low temperature in highly conductive
samples.

We begin our discussion by briefly reviewing the semi-
classical transport theory. By including the Berry phase
correction to the group velocity [8,9], one can derive the
following equations of motion:

o _ Los, ()
h ok

—k X Q,(k), (1)

ik = —¢E — ex X B,

where €, is the Berry curvature of the Bloch state
defined by
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with u,, being the periodic part of the Bloch wave in the
nth band. We are interested in the case of B = 0, for
which g,(k) is just the band energy. The distribution
function satisfies the Boltzmann equation with the usual
drift and scattering terms, and can be written as f,(k) +
6f,(k), where f, is the equilibrium Fermi-Dirac distri-
bution function and &f, is a shift proportional to the
electric field and relaxation time. The electric current is
given by the average of the velocity over the distribution
function, yielding to first order in the electric field [13]

2
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The first term is the anomalous Hall current originally
derived by Karplus and Luttinger [5], and can lead to
quantized Hall conductivity for full magnetic bands
[9,14]. In the second term, apart from the longitudinal
current, there can also be a Hall current in the presence of
skew scattering because the distribution function can
acquire a shift in the transverse direction. This shift
will be small when normal scattering processes are strong
which keep the distribution very close to equilibrium.
This is the case for pure crystals at temperature ranges
where phonon scattering dominates, because phonon scat-
tering is known to have very little skew part [1]. At low
temperatures, where impurity scattering dominates, there
can be a significant skew part that shifts the distribution
in the transverse direction. In general, because the shift is
proportional to the relaxation time, the skew-scattering
contribution to the Hall conductivity goes up linearly
with the longitudinal conductivity. This contribution can
thus be identified, when it is dominant, by the traditional
test, py, © py,- On the other hand, the Berry curvature
contribution to the Hall conductivity is independent of
scattering, and should lead to a quadratic dependence,
Py * Pix:

We now discuss our scheme for calculating the Berry
curvature and the AHC. For a cubic material with mag-
netization aligned along [001], only the z component
Q%) # 0. In our calculation, we find it convenient to
use a different but equivalent expression for the Berry
curvature that arises naturally from the Kubo-formula
derivation [14],

2Im<¢’nk |vx|wn’k><(/jn’k |vy|¢nk>

(wn/ - wn)z

Qi) =-3

n'#n

)

where E, = hw,, and v’s are velocity operators. It is also
instructive to introduce the sum (for each k) of Berry
curvatures over the occupied bands:

Qi(k) = D [, Q5 (k). (5)
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Then the intrinsic AHC is an integration over the
Brillouin zone (BZ):

e? &’k

The recent development of highly accurate ab initio
electronic structure calculation methods enables us to
complete the work of Karplus and Luttinger by evaluating
their intrinsic Hall conductivity and comparing it with
experiment. We employ the full-potential linearized
augmented plane-wave method [15] with the gener-
alized gradient approximation (GGA) for the exchange-
correlation potential [16]. Fully relativistic band
calculations were performed using the program package
WIEN2K [17]. A converged ground state with magnetiza-
tion in the [001] direction was obtained using 20 000 k
points in the first Brillouin zone and K., Ryr = 10,
where R,/ represents the muffin-tin radius and K,,, the
maximum size of the reciprocal-lattice vectors. Wave
functions and potentials inside the atomic sphere are
expanded in spherical harmonics up to / = 10 and 4,
respectively, and 3s and 3p semicore local orbitals are
included in the basis set. The calculations were performed
using the experimental lattice constant of 2.87 A. The
spin magneton number was found to be 2.226, compared
to the experimental value of 2.12 as deduced from mea-
surements of the magnetization [18] and of the g (=2.09)
factor. The calculated energy bands are very similar to
those obtained in Ref. [19]. If the spin-orbit interaction is
parametrized as £1+s, its strength ¢ is found to be ap-
proximately 5.1 mRy from the band splitting near the H
point and the Fermi energy.

After obtaining the self-consistent potential with
20000 k points, we calculated the Berry curvature with
several larger sets of k points in order to achieve the
convergence for o, shown in Fig. 1. The Monkhorst-Park
special-point method [20] was used for the integration in
Eq. (6). To go beyond 2 X 10° points, we adopted a
method of adaptive mesh refinement; i.e., when Q%(k) is
large at a certain k point, we construct a finer mesh by
adding 26 additional points around it. This procedure
yields a converged value of o, = 751 ((1cm)~! at zero
temperature (using a step function for the Fermi-Dirac
distribution) and a slightly smaller value of o, =
734 (Qcm)~! at room temperature (300 K). Our result
is in fair agreement with the value 1032 (Qcm)~! ex-
tracted from Dheer’s data on iron whiskers [21] at room
temperature.

The slow convergence is caused by the appearance of
large contributions of both signs to 1* which occur in
very small regions of k space. Spin-orbit effects are small
except when they mix states that are degenerate or nearly
degenerate. A pair of mixed states contributes negligibly
if both are occupied or are unoccupied. Therefore, only
when the Fermi surface lies in a spin-orbit induced gap is
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FIG. 1. Anomalous Hall effect vs § with different numbers of
k points in full Brillouin zone. Here § is introduced by adding
82 to the denominator in Eq. (4). The dotted lines are obtained
(for zero temperature) using a different number of k points.
The solid lines are obtained by an adaptive mesh refinement
method.

there a large contribution. For example, as shown in
Fig. 2, the large spike near H(1, 0, 0) in the direction of
P(},3,1) is due to a pair of spin-orbit coupled bands, one
occupied and one unoccupied in a small k interval. The
small energy gap gives rise to a small energy denomina-
tor, making the contribution to the Berry curvature very
large in this small interval. The largest peaks and valleys
in the distribution of the total Berry curvature are, how-
ever, located off the k-space symmetry lines. For ex-
ample, as can be seen in Fig. 3, the Berry curvature
shows sharp peaks and valleys of several orders of
magnitude in height and depth at general k points of
the (010) plane.
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FIG. 2. Band structure near Fermi energy (upper panel) and
Berry curvature 4(k) (lower panel) along symmetry lines.
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FIG. 3 (color). Fermi surface in (010) plane (solid lines) and
Berry curvature —Q?(k) in atomic units (color map).

In order to further understand the role of spin-orbit
coupling in the AHE, we artificially varied the speed of
light, thereby changing the spin-orbit coupling strength
& o« ¢72. As shown in Fig. 4, Oy is linear in ¢ for small
coupling, but not for large coupling. For iron, nonlinear-
ity becomes significant for &/&, > 1/2, which means
that the spin-orbit interaction in iron cannot be accurately
treated in a perturbative manner.

It is straightforward to extend our calculation to the ac
Hall case by using the Kubo-formula [22] approach:

e? 4k
o(w),, = Efvc Wn;/(fn,k = fux)
% Im<l//nk|Ux|¢n’k><¢n’klvy|'7[/nk>

(0, — w,)? — (0 +i8)?* @

where 0 is a positive infinitesimal. In the upper panel in
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FIG. 4. Calculated anomalous Hall conductivity (open

circles) vs the effective spin-orbit coupling strength relative
to its value for iron. The line is a guide to the eye.
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FIG. 5. Frequency dependence of the Hall conductivity at

zero temperature. In the upper panel, the calculated imaginary
part of wo,, (solid curve) is compared with experimental
results O; see Ref. [23]. In the lower panel, the real part of
o, is shown together with the dc experiment value @ extracted
from Ref. [21].

Fig. 5, we show results for the imaginary part of wo,, as
a function of frequency that are in agreement with earlier
calculations [24]. Experimental results [23] are in excel-
lent agreement below 1.7 eV but become smaller at higher
energies. In the lower panel of the figure, the real part of
the Hall conductivity, obtained from the imaginary
part by a Kramers-Kronig relation, is shown as a function
of frequency. The dc limit result, o(w =0),, =
750.8 (2 cm) !, is essentially identical to that obtained
from Eq. (6). Despite the small discrepancy with theory
in the dc limit, the experimental point @ [21] seems to
agree rather well with the overall trend of the frequency
dependence of the calculated AHC.

In conclusion, we have shown that the AHC of bcc Fe,
and presumably all other transition metal ferromagnets,
is primarily intrinsic. [The only previous evaluation of
the AHC of which we are aware [4] found that o,, =
20.9 (Qcm)~! for Fe.] The remaining discrepancy be-
tween theory and experiment is likely due to shortcom-
ings of the GGA, neglect of scattering effects, and
experimental uncertainties.
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Note added.—After submission we became aware of
two recent works on Kubo-formula evaluation of the
anomalous Hall conductivity in ferromagnetic crystals
with similar conclusions [25].
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