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Nonlinear Response of a Clean One-Dimensional Wire
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We study nonlinear transport in a clean one-dimensional wire fabricated by cleaved edge overgrowth
in molecular beam epitaxy. At low electron densities, and with a large applied bias, we observe a feature
in the differential conductance similar to the so-called ‘‘0.7 structure,’’ found in quantum point contact
devices. Using a simple model we suggest a link between this phenomenon, charge neutrality, and
unidirectional dynamics in the wire.
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additional conductance step was noticed in the QPC data nonmonotonic in this gate voltage range, with a mean
One-dimensional (1D) ballistic wires possess unique
electrical properties and have been the subject of numer-
ous studies. Conduction in such wires is often discussed in
the context of either the Landauer scattering approach or
the Luttinger liquid model. The former is expected to be
adequate when the electron-electron interactions do not
play a major role, while the latter treats these interactions
exactly and thus has a wider range of validity. Both
models are applicable with a source-drain bias much
smaller than the Fermi energy in the wire. In contrast,
the properties of ballistic wires very far from equilib-
rium, in the presence of a bias comparable to the Fermi
energy, are beyond the scope of both models. Here, we
examine transport in ultraclean quantum wires in this
unusual transport regime.

The hallmark of ballistic electron transport in a 1D
wire is the quantization of its linear conductance. In a
multimode wire, the overall conductance is given by the
conductance quantum, g0 � 2e2=h, multiplied by the
number of available 1D modes. Here e is the charge of
an electron and h is Planck’s constant. Such ballistic wires
have been implemented in a multitude of material sys-
tems to date; including split-gate semiconductor quantum
point contacts (QPC) [1,2] and wires [3], carbon nano-
tubes [4], and V-grooved [5] or cleaved edge overgrowth
AlGaAs heterostructures [6].

With semiconductor-based wires, a voltage applied to a
nearby gate readily controls the 1D charge density, and
hence the number of occupied modes can be varied. A
resultant conductance-gate voltage trace exhibits a series
of quantized conductance plateaus. This quantization of
the linear conductance in ballistic wires is a robust phe-
nomenon—insensitive to the system details. All that is
required is the absence of backward scattering inside the
wire and adiabatic feeding of charge from the reservoirs
into the wire.

However, with a large source-drain bias, the dif-
ferential conductance may deviate from these integer
conductance values. For example, in QPC devices, half-
integer plateaus were predicted [7] and, indeed, found [8]
in the presence of a large bias. More recently, a surprising
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[9–18]. At low 1D densities and intermediate biases, the
conductance dwells at a value of �0:7g0 for a finite range
of gate voltages.

This so-called ‘‘0.7 structure’’ is a weak feature, dis-
tinct from the two main plateau sequences. In QPC de-
vices, it is observed either at intermediate source-drain
voltages or, counterintuitively, at somewhat elevated tem-
peratures. The evolution of this structure with bias, mag-
netic field, and temperature has led to a suggested link
between this phenomenon, the spin degree of freedom
[9,10], and the Kondo effect [18,19]. Alternatively, an
electron-phonon mechanism was recently suggested
[20] as a possible origin of this phenomenon.

Here we describe the nonlinear response of a different
1D system. Using the cleaved edge overgrowth (CEO)
technique [6], we fabricate long and ultraclean ballistic
quantum wires with a length-to-diameter ratio of �100,
far larger than in QPC devices. We show that CEO wires
share a 0.7-like structure with QPC devices and that
at low temperatures this structure occurs whenever the
applied bias is as large as 4 times the Fermi energy in
the wire.

Linear response studies [21,22] have proven CEO wires
to be ultraclean, characterized by a long backscattering
length that can exceed 20 �m. The coupling of such CEO
wires to their reservoirs, however, falls shy of ideal—
leading to a somewhat larger contact resistance and a
reduced two-terminal conductance per channel [see inset
of Fig. 1(a) and Refs. [6,21,22] for details]. The wire itself,
however, is ballistic and resistance-free, as verified by
four probe resistance measurements [23].

Differential conductance traces, measured with differ-
ent values of an applied source-drain voltage, are shown
in Fig. 1(a). At low bias, the linear conductance exhibits
weak modulations with gate voltage about its mean value
of �0:85g0. As the bias is increased, the mean differential
conductance increases while the oscillatory structure di-
minishes. Instead, a conductance peculiarity emerges at
low densities. Similar to the 0.7 structure data from
QPCs, this feature becomes more pronounced at larger
applied biases. As can be seen in Fig. 1, the conductance is
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FIG. 2 (color). Transconductance vs gate voltage and dc bias:
The numerical derivative of the differential conductance with
respect to gate voltage [see Fig. 1(b)] as a function of gate
voltage and dc bias, in a color plot format. Data were taken with
an ac excitation of 18 �V at a bath temperature of 18 mK. The
red lines separate regions of different conductance values, as
indicated. The data are largely symmetric with respect to the
applied bias. The slight asymmetry results from unintentional
device asymmetry that varied from device to device within the
3 wires measured. Superimposed on the data are the curves
u
�Vg�, solid white line, and u0�Vg�, solid black line (see text).
The onset of the 0.7 anomaly corresponds to the u0�Vg� curve,
which marks the depletion of left (right) movers at a positive
(negative) bias.

FIG. 1 (color). Differential conductance vs gate voltage at
different biases. (a) Differential conductance of a 2 �m long
CEO wire at a bath temperature of 18 mK. An ac excitation of
18 �V was used in conjunction with a dc bias of 0, 1, 2, and
3 mV (solid lines). The conductance anomaly at low densities is
more pronounced at a larger source-drain bias. Inset: Geometry
of a CEO wire: A two-dimensional electron gas (2DEG)
is formed in a 25 nm GaAs quantum well by modulation
doping. The resultant 2DEG has a carrier density ns � 2:5�
1011 cm�2, and mobility � � 4� 106 cm2=Vs. A second
modulation doping sequence is then grown onto a freshly
cleaved [011] facet to create the 1D wire along the cleaved
edge. A tungsten gate evaporated onto the top surface is utilized
to deplete the 2DEG and separate out the wire in front of it. The
resultant two separate 2DEG sheets are used as source and
drain reservoirs. (b) The numerical derivative of the differ-
ential conductance at a 3 mV bias [(a), black trace], with
respect to the gate voltage. This quantity highlights the
transitions between different conductance values, as shown.
Inset: the conductance plateau is bound by the second subband
at high densities and by depletion of left movers at low
densities—see text.
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value of about 70% of its plateau [24]. This conductance
feature is distinct from yet another conductance step,
which occurs at a conductance of �0:25g0 in our wires
[see Fig. 1(a)].

To follow the evolution of the differential conductance
with bias and gate voltages, we plot its numerical deriva-
tive with respect to the gate voltage —as shown in
Fig. 1(b). This quantity measures the sensitivity of the
conductance to the charge density in the wire. Therefore,
the bias dependence of the contact resistance, which is
associated with the nongated regions—where the 1D
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density is fixed, is eliminated from the resultant data.
Many such traces, taken at different bias values, allow
us to map the conductance changes with both gate voltage
and bias—as shown in a color-plot format in Fig. 2.
The red lines in the data separate regions of different
conductance values, as indicated. Within each region the
gate voltage dependence of the differential conductance
is weak.

The lowest red line in Fig. 2 separates the zero-
conductance state, with a depleted wire, from the finite
conductance regions. This pinch-off line exhibits a cusp
at small biases. In addition, the aforementioned weak
conductance oscillations are visible in the same bias
range, at larger gate voltages. Both phenomena disappear
at an elevated temperature of 4.2 K (not shown). These
features are inconsequential for the present discussion
and will be the subject of a separate study.

To analyze these data, we adopt a simple model for
transport in a ballistic wire. The relevance of this model
stems from the data, as is shown below. Consider free
electrons induced by a nearby gate into a clean 1D chan-
nel, which is coupled adiabatically to two reservoirs. The
chemical potential in the wire is � � �h2k2F=2m, where m
is the effective mass of an electron and the Fermi wave
vector, kF, is related to the electron density, n, and hence
to the gate voltage, Vg, via kF � ��=2�n � ��=2��cVg=e�.
Here c is the wire-gate capacitance per unit length and
the gate voltage is measured with respect to the value
036805-2



FIG. 3 (color). Transconductance of the upper wire modes:
(a) The numerical derivative of the differential conductance
with respect to gate voltage, as a function of gate voltage and
dc bias in a color plot format. Data were taken with an ac
excitation of 18 �V at a bath temperature of 18 mK. The gate
voltage range shown corresponds to the second through sixth
wire modes. Solid lines: u
�Vg� and u0�Vg� curves for each one
of the wire modes (see text). (b) Left panel, blue squares: The
capacitance between the gate and the ith wire mode, as calcu-
lated in a simple model (see text), plotted against the mode
index. These capacitance values lead to the excellent agreement
with the data in (a) as well as in Fig. 2. Right panel, green
circles: the interchannel gaps 
i!i�1, as deduced from the data.
The confinement energy of the first mode is �15 meV.
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required to deplete the wire at zero bias. A finite energy
gap, 
, separates the lowest wire mode from the second
subband.

To facilitate an electrical current, an imbalance be-
tween the electrochemical potentials of the source (right)
and drain (left) reservoirs is imposed. This bias, in turn,
establishes a difference between the chemical potentials
of the left and right propagating electrons in the wire (��

and ��, respectively): �� ��� � eu, with u the ap-
plied bias. Importantly, the charge density in the wire is
nearly independent of this bias—remaining almost equal
to the equilibrium one. This arises because with a small
gate-wire capacitance, a large potential energy penalty is
associated with charge imbalance. Charge neutrality is
thus facilitated by a uniform shift of the potential in the
wire, such that
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. This potential shift

reflects the screening of the applied bias by the free
charges and is accomplished by two potential steps at
the inlet and at the outlet of the wire. Note that this
potential shift equals half the applied voltage [23] only
at voltages much smaller than the Fermi energy.

At low biases, the considerations above are sufficient to
calculate the two chemical potentials: �
 � ��1

eu=4��2. Thus, as the bias is increased two unique situ-
ations may occur: (a) For � � 1

4 
, a bias u
 �
4�=e�

�����������

=�

p
� 1� enforces �� � 
. Thus, a bias u >

u
 allows the second subband to participate in transport
and an increased conductance is expected [see Fig. 1(b)].
(b) Alternatively, for � � 1

4 
, a bias as large as u0 �
4�=e imposes �� � 0. With such a bias, the electrons in
the wire are unidirectional and the entire population
propagates in the same direction—accounting for the
current [see Fig. 1(b)].

Indeed, we find that the line marking an increase in the
differential conductance beyond its plateau value corre-
sponds well to the curve u
�Vg�—as shown by the solid
white line in Fig. 2. The only free parameter here is the
specific capacitance, which we determine to be c �
18:5
 0:5 aF=�m. This measured value agrees very
well with independent measurements via tunneling spec-
troscopy in very similar structures [25], as well as with
estimates based on the known geometry [26].

Remarkably, we find that at lower densities the curve
u0�Vg�, i.e., the bias required for unidirectional dynamics,
agrees very well with the onset of the conductance re-
duction from its plateau value towards the 0.7 structure —
as shown in the same figure. Thus, the depletion of left (or
right) movers marks the occurrence of this structure. We
emphasize that this curve is simply plotted onto the data
in Fig. 2 with no additional fitting parameters. The emer-
gence of this boundary points directly to the importance
of screening—central to the simple model above.

In Fig. 3(a) we show similar data, taken at larger gate
voltages, where the second through sixth wire modes are
occupied. As evident from this figure, these data can be
fitted to the same model above, again with a striking level
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of agreement. However, we find from our fits that the
capacitance between the gate to each channel increases
by �10% per channel. As the higher modes of the wire
are populated, the capacitance from the gate to each of
these modes is, indeed, expected to vary because the
transverse charge distribution in the wire is controlled
by the mode wave functions and thus varies with the
mode index. This ‘‘wire diameter’’ variation is expected
to affect the geometrical part of the capacitance loga-
rithmically. In addition, all the wire modes are coupled,
both via a direct capacitive coupling and also because all
modes share common reservoirs, dictating a common
electrochemical potential.

Drawing an analogy to the capacitance of a coaxial
cable, we estimate the capacitance between the gate and
the ith channel in our CEO wires as Ci � �2�"0"r=
ln�d=�i�, where �i is the half-width of the wave function
of the ith mode, d is the distance to the gate, and a is a
036805-3
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proportionality factor—accounting for the fact that the
gate is planar rather than concentric with the wire.
Approximating the half-width of the ith mode by �i �
i�100 �A� [23] and using the known wire-gate distance,
d � 5000 �A, we obtain an excellent fit for all the data in
both Figs. 2 and 3(a) with a single fitting parameter, � �
0:1. This agreement shows that the overall capacitance is
dominated by geometry and the corrections due to the
density of states or the intermode coupling are negligible,
as expected.

This work matches the onset of the 0.7 structure with
depletion of either left or right movers in the wire. The
conductance value itself (g� 0:7g0) remains unex-
plained, and the existence of yet another flat conductance
region (g� 0:25g0) is not clarified. A model for a QPC
[7] assumes a large number, j, of quasi-1D modes present,
and thus ignores screening to predict g � �j� 1=2�g0 at a
bias large enough to establish unidirectional dynamics in
the jth mode. Thus, with a single mode wire and screening
ignored, a conductance of 1

2 g0 is expected. In contrast, a
strictly charge-neutral wire is expected to exhibit a zero
differential conductance in this bias range. Once the left
movers are depleted, the number of right movers is dic-
tated by charge neutrality; since the resultant current,
Imax � 8�e=h��, is independent of bias, the differential
conductance is expected to vanish. With a finite wire-gate
capacitance, a self-consistent solution is likely to yield an
intermediate differential conductance; 0< g< 1

2g0 and
may explain the g� 0:25g0 plateau observed here. We
emphasize, however, that this plateau occurs at a lower
density (or a larger bias) than expected, while a g� 0:7g0
feature, not captured by such considerations, persists over
an intermediate parameters regime.

Finally, it is worth mentioning that the unique situation
of unidirectional electron occupation discussed here is
unlikely to occur in linear response at elevated tempera-
tures, where the 0.7 structure is also observed [24]. Thus,
the relation between the large-bias–low-temperatures 0.7
structure discussed here and the one observed at high
temperatures in linear response clearly represents a fur-
ther challenge to the theory.

To summarize, we have measured the nonlinear two-
terminal conductance of clean and long CEO wires and
found a 0.7-like structure. Emphasizing charge neutrality,
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we suggest a possible link between this phenomenon and
the screening properties of a quantum wire in which all
electrons are unidirectional.
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