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Bistability and ‘‘Negative’’ Viscosity for a Suspension of Insulating Particles in an Electric Field
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It is shown that a suspension of insulating particles in a liquid with low conductivity possesses
bistability and has a ‘‘negative’’ effective viscosity effect in the electric field due to internal rotations.
By Brownian dynamics simulation it has been found that thermal fluctuations of the angular velocity of
particles in this bistable system can have a large effect on the viscosity of the suspension.
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 clockwise and clockwise directions:
The unusual properties of bistable systems in the pres-
ence of thermal noise have been of great interest recently
[1–4]. Among the properties of these systems we can
mention the softening of a mechanical system leading
to negative stiffness [1], the negative friction coefficient
of the fluctuating bistable systems [2,3], and the negative
resistance due to the rectification of Brownian motion [4].
Interesting possibilities for the investigation of the un-
usual properties of bistable systems offer the assemblies
of the particles or drops in the insulating liquids which
exhibit the interesting phenomena of agglomeration and
spontaneous rotation of the aggregates in the electric field
[5–9]. A simple system with bistable behavior arises due
to the so-called Von Quincke effect when the spontaneous
rotation of the dielectric rod, immersed in an insulating
liquid, in one or another direction occurs at a dc electric
field strength larger than the threshold value [10].
Intriguing effects caused by spontaneous rotations take
place in a suspension of insulating particles. At an elec-
tric field strength larger than the threshold value an
increase in the conductivity of the suspension due to
convective charge transfer has been observed [11]. The
orientating effect of macroscopic shear flow on the rota-
tion of particles can produce a spontaneous macroscopic
motion of a suspension with a free boundary in an electric
field even below the threshold value of the Von Quincke
effect [12]. The possibility of sustaining the macroscopic
motion of a liquid in a homogeneous electric field with-
out applying any force has been experimentally con-
firmed [13]. A direct increase of the flow rate of the
suspension with insulating particles—a ‘‘negative’’ vis-
cosity effect —has been observed quite recently [14].

The theoretical models of spontaneous rotation phe-
nomena are based on the polarization relaxation equation
describing the kinetics of free charge accumulation on the
interface of spherical particle due to the difference of
electrophysical properties of the media [15] (for a more
complex case of ellipsoidal particles, see [16] and the
references therein):

d ~PP
dt
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Here ~�� is the angular velocity of the particle, ~��0 is the
vorticity of a flow, 
 � 6�V is the rotational friction
coefficient of a spherical particle with volume V, �0 is
permittivity of free space, �0;1 are susceptibilities of
particle polarization at low and high electric field fre-
quencies correspondingly:
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�2 � �1

�2 	 2�1
;

�1 � 3�1
�2 � �1
�2 	 2�1

:

� � �0��2	2�1�
��2	2�1�

is the Maxwell relaxation time, �1;2 and �1;2

are, respectively, the relative dielectric permittivity and
conductivity, and index 1 refers to the fluid and index 2 to
the particle. For a quiescent liquid, if the rotational inertia
of a particle is taken into account, the set of equations (1)
and (2) coincides with the famous set of Lorentz equa-
tions [17], where the following values of parameters are
valid (in standard notation): r � � EEc

�2; � � �
�r

; b � 1[18].
Here �r �

I

 is the characteristic inertial time, I is the

moment of inertia of the particle, and E2
c � � 


�0��0��1��V

is the threshold value of the critical electric field strength
for spontaneous rotations of particles. For spontaneous
rotations to occur the condition �1

�1
< �2

�2
is necessary.

It should be noted that the set of polarization relaxation
equations (1) and (2) formally is equivalent to the phe-
nomenological magnetization relaxation equation of
magnetic colloids, suggested on a phenomenological basis
by Shliomis in 1971 for the description of magnetic
relaxation of magnetic dipoles in an external field in the
presence of thermal noise [19]. As it turned out later in
this case the relaxation equation describes correctly the
behavior of a colloid only for small shear rates [20]. The
discrepancy is connected with the procedure of the split-
ting of moments of orientation distribution function
which arises at the solution of the Fokker-Planck equa-
tion. This is not a case of polarization relaxation equa-
tions (1) and (2) which are exactly derived from the
equations of electrostatics and charge conservation [15].

The spontaneous rotations arising at E > Ec are de-
generate since they can take place in both counter-
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-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5

P y

Ω 0 τ 

3

1

2

FIG. 1. Solutions of Eq. (7) in dependence on �0�; E2
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In the flow the degeneracy disappears and bifurcation
becomes imperfect [11]. In this situation the thermal
fluctuations of particle rotation can be important, since
they can change the population probabilities of the two
possible states of rotation. These transitions could help us
understand the quantitative discrepancy which exists be-
tween the predictions of the theoretical model and the
experimental data [14]. In this Letter the influence of
random thermal fluctuations on a negative viscosity effect
has been studied numerically by means of Brownian
dynamics [20]. The set of the Langevin equations in-
cludes Eq. (1), where the transfer of charge due to the
random rotation of a particle is accounted for, and Eq. (2).
The equation (1) with a term accounting for the random
noise of the particle angular velocity ~��r reads

d ~PP
dt

� �� ~��	 ~��r� � ~PP� �
1

�
� ~PP� �0��0 � �1� ~EE�: (3)

To realize the Brownian dynamics ~PP is expressed as ~PP �
P ~nn, where ~nn is a unit vector along the direction of particle
polarization. Then [P � ��0��0 � �1�E ~PP; ~ee is a unit
vector in the direction of the electric field; hereafter
tildes are omitted]

dP
dt

� �
1

�
�P	 ~ee � ~nn�; (4)

d ~nn
dt

� � ~��n � ~nn�: (5)

Here the angular velocity of polarization direction rota-
tion ~��n is
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In the case when thermal fluctuations are absent,
Eqs. (4) and (6) for Py � �nynz in the steady case give
( ~��0 � �0 ~eex)
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The solutions of Eq. (7) for E2

E2
c
� 2 as function of �0� are

shown in Fig. 1. It can be seen that, in a certain range of
vorticity that depends on the strength of the electric field,
Eq. (7) has three solutions, one of which, illustrated by
curve 2 in Fig. 1, is unstable. The two solutions shown by
curves 1 and 3 correspond to the negative and positive
viscosity effects. Since nz > 0 then solution 3 has Py > 0,
but solution 1 Py < 0. This means that on branch 3 the
relative rotation of particles occurs in the counterclock-
wise direction and thus diminishes the effective viscosity.
Particles with polarization corresponding to branch 1
have Py < 0 and rotate clockwise relative to the liquid.
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This leads to an increase in the effective viscosity. Since
the system is bistable in the definite range of the shear
rate and a contribution of each state to the effective
viscosity effect has the opposite sign, there is a strong
effect of the thermal fluctuations. For its calculation,
according to the method of Brownian dynamics, the
macroscopic values of the polarization are found by
means of averaging along the Brownian trajectory of
the particle. To realize Brownian dynamics the moving
orthonormal frame f ~ee1; ~ee2; ~ee3g is introduced. Here ~ee1 �
� ~nn0 � ~ee�=j� ~nn0 � ~ee�j; ~ee2 � � ~nn0 � ~ee1�; ~ee3 � ~nn0, but ~nn0 is the
instantaneous value of ~nn. The variations of components of
the vector ~nn during the time step 	t are expressed as
follows:

	n1 � �n2	t; 	n2 � ��n1	t;

but the component along ~ee3 is found from the conserva-
tion of the length of the unit vector ~nn. Because of the
fluctuation-dissipation theorem the random angles of ro-
tation �1r	t and �2r	t are distributed according to the
Gaussian law with a zero mean value and a dispersion
2kBT

 	t. After each time step the components of the vector
~nn in the laboratory set of coordinates are found according
to the relations given in [20,21]. For a qualitative illus-
tration of what is happening with the present system in
the condition of bistability in Figs. 2 and 3 the distribu-
tions of P~nn values projected on the yz plane for 4:105�B

long runs with time step 2:10�3�B are shown at E2

E2
c
� 2

and �0� � 0:03, when, according to results in Fig. 1, the
system is bistable. We see that an increase of the ratio of
the Brownian and Maxwell relaxation times 2�B

� changes
the occupation probabilities near both stationary states
of a bistable system. The equilibration of occupancy
probabilities of two states with the counterrotation of
particles leads to a considerable decrease of the negative
viscosity effect. For the large value of 2�B

� , when thermal
fluctuation effects are less expressed, the particle polar-
ization values Py; Pz in agreement with the curves shown
in Fig. 1 are distributed near the state �	0:5;�0:49�,
which corresponds to the direction of the particle rotation
leading to the negative viscosity effect.
034501-2



FIG. 2. Probability distribution of the system in phase plane
Py; Pz;

E2

E2
c
� 2; 2�B

� � 10. It shows that in the regime of strong
fluctuations the probabilities of the polarization values near the
steady states, for the given values of the parameters having
coordinates �
0:5;�0:49�, are practically equal. Thus the
‘‘negative’’ viscosity effect is small in this case since the two
populations of particles give the contributions of the opposite
sign to the effective viscosity.
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The contribution of the rotating particles to the effec-
tive viscosity of the suspension is obtained by considering
the antisymmetric part of the stress tensor that arises due
to the relative rotation of particles with respect to the
fluid [19,21]. In the case of a simple shear flow with �0 �
� 1

2
dvy

dz and an electric field E in the direction of the z axis,
the antisymmetric part of the viscous stress tensor is
given by ( ~PPs � nV ~PP is polarization of the suspension; n
is number of particles per volume unit)

�a
yz �

1
2eyzx�

~PPs � ~EE�x �
1
2P

s
yE: (8)

The contribution of the antisymmetric stress to the effec-
FIG. 3. Probability distribution of the system in phase plane
Py; Pz;

E2

E2
c
� 2; 2�B

� � 50. It shows that in the case of weak
fluctuations the probability of the polarization value is en-
hanced near the state with coordinates �0:5;�0:49�. This
corresponds to the negative viscosity effect. In this case the
contribution to the effective viscosity of the particles near the
second steady state of a bistable system is small.
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tive viscosity of the suspension is given by

�a
yz

dvy

dz
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E2

E2
c
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�0�
� �

n

4

E2

E2
c
	�:

Since Pny > 0 at �0 > 0 the particles rotate in the di-
rection imposed by the vorticity; then their contribution
to the effective viscosity is negative, the so-called ‘‘nega-
tive effective viscosity effect’’ [11–14]. A negative effec-
tive viscosity effect, but much weaker and only in ac
magnetic fields, is known also for magnetic liquids [22].

The magnitude of the negative viscosity effect in the
presence of an electric field, as has been shown by calcu-
lations based on the Brownian dynamics, strongly de-
pends on the ratio of characteristic Brownian and
Maxwell relaxation times. The absolute values of the
contribution of the rotating particles to the effective
viscosity of the suspension in dependence on ! � �0�
for different values of 2�B

� are shown in Fig. 4. It can be
seen that the thermalization of particles leads to a con-
siderable decrease of the negative viscosity effect in com-
parison to the case when the thermal fluctuations are
absent.

The negative effective viscosity effect was measured
experimentally by the determination of the flow rate
through a capillary under the action of an electric field
[14]. In the case of the plane Poiseuille flow when � �
�qz (�: tangential stress; �q: pressure gradient) the
angular velocity of particle rotation � is determined by
the equation

��
2� � ���	

�
1	

n

4�

�
E2

E2
c

��

1	 ����2
: (9)

Above a threshold value of the field strength E2
� �

1
1	n
=4�E2

c a spontaneous macroscopic motion of the sus-
pension is possible due to the orientating effect of vor-
ticity [12]. The velocity profile v0f�~zz�, where ~zz � z=d is a
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 1 1.5 2 2.5

∆η
  

ω

FIG. 4. The negative viscosity effect for different values
of 2�B

� (25; 10; 5; 1) starting from above. The solid line is the
theoretical curve for the situation without thermal fluctuations.
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dimensionless coordinate across the capillary and 2d is
the width of the capillary, is found by integration of the
total tangential stress, including the contributions from
the shear stress and rotating particles (a � n


4� ):

�
2d

v0f�
�qd
4�

�1�z2�	
a

1	a
E2

E2
�

Z 1

z

�1�

1	��1��
2dz: (10)

Here �1 is the corresponding root of the cubic equation
(9). In this case since the particles rotate in the direc-
tions determined by the vorticity, which are opposite on
each side from the symmetry plane of the flow, the shear
rate has a jump on the symmetry plane of flow at E2

E2
�
> 1.

The particles rotating in opposite directions cause a force
in the direction of flow which manifests itself as a di-
minuition of the viscosity of the suspension.

The flow curves are calculated numerically by inte-
grating the relation (10). The flow curves for several
values of the electric field strength are shown in Fig. 5.
They are similar to flow curves of Newtonian liquid
except that the volume flux is possible at E2

E2
�
> 1 even

without a pressure gradient due to spontaneous rotations
of particles. This is a pumping effect of the rotating
particles. Such effects are used to create pumps for micro-
fluidics [23]. Dimensionless variables 	p and Q in Fig. 5
are scaled with 2�

�d and 2d2

� correspondingly. The flow
curves in Fig. 5 are qualitatively similar to those ob-
served in the experiment [14]. Nevertheless, there is a
certain quantitative mismatch between the experimental
flow curves and theoretical ones. In addition to the pecu-
liarities of geometry that cause the inhomogeneity of
internal rotations, the effects due to equilibration of
occupation probabilities of a bistable system, caused by
thermal noise or random hydrodynamic interactions, can
also be important. The role of the hydrodynamic inter-
action of rotating particles in pattern formation of the
system of magnetic particles is illustrated in [24]. The
thermal fluctuation effects for the system investigated in
[14] evidently may be excluded. The Maxwell relaxation
time for the carrier liquid with �1 � 2� 10�8 s=m, �1 �
034501-4
3:4 and the insulating particles with �2 � 2:6 2� 10�3 s
is much smaller than the Brownian relaxation of quite
large particles with the diameter a � 100 'm (� �
10 cP): �B � 4� 106 s. The critical field for a rising of
the Von Quincke rotations in this case is Ec � 9 kV=cm,
which is in the range of electric field strengths used in the
experiment [14]. For the system with electrophysical
parameters given above the thermal fluctuations of angu-
lar velocity of the particles should be important at �B �
10� which gives for the diameter of particles 0:1 'm.

To summarize this Letter we can say that a suspension
of insulating particles under the action of an electric field
gives an interesting example of a bistable system with a
negative effective viscosity effect where the thermal fluc-
tuation effects can play a significant role.
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