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Production of Ultracold, Polar RbCs� Molecules via Photoassociation
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We have produced ultracold, polar RbCs� molecules via photoassociation in a laser-cooled mixture of
Rb and Cs atoms. Using a model of the RbCs� molecular interaction which reproduces the observed
rovibrational structure, we infer decay rates in our experiments into deeply bound X 1�� ground-state
RbCs vibrational levels as high as 5� 105 s�1 per level. Population in such deeply bound levels could be
efficiently transferred to the vibrational ground state using a single stimulated Raman transition,
opening the possibility to create large samples of stable, ultracold polar molecules.
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cules in collisions between different atomic species [20–
23]. In recent experiments NaCs� and RbCs� ions

low the lowest lying excited asymptote, correlating to
Rb 5S1=2 � Cs 6P1=2 (this is the most favorable choice for
Ultracold polar molecules, due to their strong, long-
range, anisotropic dipole-dipole interactions, may pro-
vide access to qualitatively new regimes previously
inaccessible to ultracold atomic and molecular systems.
For example, they might be used as the qubits of a
scalable quantum computer [1]. New types of highly
correlated many-body quantum states could become ac-
cessible such as BCS-like superfluids [2], supersolid and
checkerboard states [3], or ‘‘electronic’’ liquid crystal
phases [4]. Ultracold chemical reactions between polar
molecules have been discussed [5], and might be con-
trolled using electric fields [6]. Finally, the sensitivity of
current molecule-based searches for violations of funda-
mental symmetries [7] might be increased to unprece-
dented levels.

Cold, trapped polar molecules have so far been pro-
duced using only either buffer-gas cooling [8] or Stark
slowing [9], at temperatures of �10–100 mK [8,9]. This
is much higher than the �1–100 �K accessible with
atoms, and attempts to bridge this gap with evaporative
cooling may run afoul of predicted molecular Feshbach
resonances [10] or inelastic losses [11].

Another approach is to extend well-known techniques
for producing ultracold (nonpolar) homonuclear diatomic
molecules in binary collisions of ultracold atoms, either
through photoassociation [12–16] or Feshbach resonance
[17,18]. In these methods, the translational and rotational
temperatures of the molecules are limited only by the ini-
tial atomic sample, possibly providing access all the way
to the quantum-degenerate regime [15,18]. An important
limitation, however, is that the molecules are typically
formed in weakly bound vibrational levels near dissocia-
tion, which may have vanishing electric dipole moments
[19], and are unstable with respect to inelastic collisions
[10,11,15]; therefore, a method for transferring them to
the vibrational ground state is desirable [14].

Several authors have discussed the extension of these
methods to the formation of (heteronuclear) polar mole-
0031-9007=04=92(3)=033004(4)$22.50 
formed in the presence of near-resonant light have, in-
deed, been observed in small numbers [21]; however,
these observations did not permit an analysis of their
formation mechanism or demonstrate a method for pro-
ducing neutral, ultracold polar molecules.

In this Letter, we describe the production of electroni-
cally excited, polar RbCs� molecules via photoassocia-
tion in an ultracold (T � 100 �K) mixture of 85Rb and
133Cs atoms. We have observed their electronic, vibra-
tional, rotational, and hyperfine structure, as well as the
large dc Stark effect characteristic of a polar molecule.
Analysis of our data allows us to infer spontaneous decay
rates to deeply bound vibrational levels of the RbCs
X 1�� electronic ground state of up to �5� 105 s�1 per
level. Our calculations show that molecules in such levels
could be transferred to the vibrational ground state of
RbCs with a single, stimulated Raman transition.

Photoassociation (PA), illustrated in Fig. 1, occurs
when two colliding ground-state atoms absorb a photon
and are promoted to a weakly bound, electronically ex-
cited molecular level [24,25]. As indicated in Fig. 1(b),
the levels accessed in heteronuclear PA are of much
shorter range than their homonuclear counterparts; this
arises from the fact that at long range, in their first excited
state, two identical atoms interact via the resonant-dipole
interaction [with potential V�R� / R�3], whereas two
atoms of different species interact only via much
shorter-ranged van der Waals forces [V�R� / R�6]
[20,26]. In the latter case, for a given excited-state bind-
ing energy, the Franck-Condon factor (FCF) characteriz-
ing the overlap between the initial free-atom ground state
and the excited molecular bound state is significantly
smaller, requiring a higher PA intensity. However, the
FCF for decay to deeply bound vibrational levels of the
ground X 1�� state is also larger, as we discuss below.

Our observations are made in a dual-species magneto-
optical trap (MOT) [27]. We excite colliding atoms into
RbCs� rovibrational levels at a variable detuning � be-
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FIG. 2 (color online). RbCs� PA signals. The PA detuning is
specified relative to the 6S1=2, F 	 3 ! 6P1=2, F0 	 3 transi-
tion of Cs at 11 178:4172 cm�1. The upper traces (left axes)
show the Cs trap population and the lower (right axes) the Rb
trap population. (a) The features marked with dashed lines
arise from the J 	 0; 1; 2 rotational components (J is the quan-
tum number associated with the total molecular angular mo-
mentum, except nuclear spin) of a RbCs� 0� vibrational level
with an outer turning point at 13.2 Å. Another rotational series
also appears only in the Cs trace, associated with a 0�u level of
Cs�2 having an outer turning point at 24.8 Å. Of the two, the
RbCs� state has a much larger rotational splitting due to its
shorter-range character. (b) Resolved hyperfine-rotational sub-
structure of a RbCs� level with � � 0.
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FIG. 1 (color online). Schematic of the photoassociation pro-
cess. (a) 85Rb� 133Cs atom pairs are excited during a collision
(upward arrow) to molecular levels (horizontal line) below the
Rb 5S1=2 � Cs 6P1=2 atomic asymptote. They can then decay
(dashed, downward-pointing arrow) to ground-state molecular
levels. (b) Detailed view of the potentials, labeled by their
Hund’s case (c) quantum number � 	 0�; 0�; 1; 2. The hori-
zontal lines indicate vibrational levels accessed in this work.
The dotted curve shows the potential for the 0�u state of Cs2, to
illustrate its longer range character for weakly bound levels.
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our purposes since these levels do not predissociate [28]).
After a pair is excited, it decays either to a ground-state
RbCs molecule or back to energetic free Rb and Cs atoms
which typically escape from the two traps. The signature
of RbCs� formation is then a resonant steady-state deple-
tion of both the Rb and Cs traps induced by the PA laser.
For optimal sensitivity, we maximize the PA-induced loss
rate (proportional to the product of the Rb and Cs den-
sities integrated over the PA beam profile) while mini-
mizing other intrinsic losses that compete with it to
determine the steady-state trap populations. For this pur-
pose, we use forced dark-spot MOTs [29,30] to increase
the Rb and Cs densities by factors of 9 and 4 (relative to
‘‘bright’’ MOTs), respectively, while reducing their in-
trinsic losses due to light-assisted inelastic collisions [30].
These losses are further reduced in the Rb trap by sig-
nificantly decreasing the trapping laser intensity.

The peak density n, atom number N, and spatial over-
lap of the two atomic clouds were optimized using two-
033004-2
color absorptive imaging from two orthogonal directions.
Typical values were NRb	4�108, nRb	7�1011 cm�3,
and NCs	3�108, nCs	3�1011 cm�3. Independent
measurements of NRb;Cs using resonance fluorescence
confirmed these values to within �30%. Temperatures
of TRb 	 55 �K and TCs 	 140 �K were measured using
time-of-flight absorption imaging [31].

The Ti:sapphire PA laser produced 600 mW of power
around 895 nm; its frequency was monitored using both
a wave meter and an optical spectrum analyzer, provid-
ing absolute (relative) accuracy of 150 MHz (5 MHz).
To increase the PA intensity, the laser light was mode-
matched into a buildup cavity (finesse �60) placed
around the vacuum chamber; its e�2 mode radius at the
atom traps of 380 �m (the typical size of the MOT clouds
was 750 �m) resulted in PA intensities up to 4�
107 W=m2 [27].

In order to detect PA-induced loss, the fluorescence rate
of each MOT was monitored with a photodiode, as the
frequency of the PA laser was scanned. An example of the
observed signals is shown in Fig. 2, where the features
033004-2
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common to both Rb and Cs traces can be identified as
RbCs� levels. From the depletion of the Rb trap (up to
70%) we estimate resonant heteronuclear PA rates as
large as �1:5� 108 s�1, close to the expected maximum
rate for our parameters determined by probability con-
servation in a binary scattering process (the so-called
‘‘unitarity limit’’) [25,27]. The loss rates are, indeed,
observed to saturate as a function of intensity, at values
typically >106 W=m2, significantly higher than in ho-
monuclear experiments [22,24]. These values are also
consistent with our estimates based on a WKB approxi-
mation for the ground-state wave function at short range
[20,25,27].

We have observed RbCs� levels over the range ��
10 ! 100 cm�3 [27], and we find vibrational progressions
corresponding to the expected � 	 0�; 0�; 1, and 2 po-
tentials dissociating from both the 6P1=2 and 6P3=2 limits,
as shown in Fig. 1(b). The � 	 0� levels have no hyper-
fine splitting in leading order, and are thus identified by
their clean rotational structure [Fig. 2(a)]. The � 	 1; 2
features display a complex hyperfine-rotational structure
[Fig. 2(b)], the analysis of which is in progress.

We have also demonstrated the polar nature of the
observed RbCs� states by applying electric fields (Fig. 3).
The observed Stark effect agrees in form with that ex-
pected for a polar, diatomic rigid rotor, as illustrated by
the fit in Fig. 3. From this fit we extract an electric dipole
moment for this level of �e 	 1:3� 0:1 D.

We have analyzed our observations of the � 	 0�

levels by fitting them to a model of the RbCs� potentials,
based on ab initio calculations [32] and previous spectro-
scopic data [27,33]. A thorough discussion of this analysis
will be presented elsewhere. Figure 4 shows a comparison
between the observed � 	 0� levels, and the best fit from
our model. In the 0� case [Fig. 4(a)], two distinct vibra-
tional series are evident, with spacings on the order of
3 and 15 cm�1. These are associated with the two differ-
ent 0� potentials dissociating from the 6P1=2 and 6P3=2
atomic limits [see Fig. 1(b)]. The latter are bound by more
than 550 cm�1, and have outer turning points as small as
E = 390 V/cmE = 0
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FIG. 3 (color online). Stark effect in a RbCs� � 	 0� state.
The dotted line is a fit of the E 	 390 V=cm spectrum, based
on the expected Stark effect for a diatomic rigid rotor (illus-
trated schematically on the right) with �e 	 1:3 D.
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9 Å at our detunings; consequently, these features would
be difficult to see without our high PA intensity, as their
free-bound FCFs are relatively small. Also evident in the
figure is a coupling between these two vibrational series,
causing a perturbation in the rotational constant when a
near degeneracy occurs. For the 0� levels [Fig. 4(b)], the
coupling is so much stronger that almost no trace remains
of the ‘‘unperturbed’’ vibrational structure, and all levels
have a strongly mixed character, as illustrated by the
wave function in the inset. This type of coupling has
been discussed theoretically [24], and was previously
observed in 0�u levels of Cs�2 [12], though it is a much
weaker effect in that system. As a final note, the values we
extract from our analysis for the long-range dispersion
coefficient C6 of the RbCs� A 1��

0 , b 3�0, and �2� 3��
0

states [see Fig. 1(a)] all agree with ab initio calculations
[26] to within a few percent [27,34].

Using our model of the RbCs� potentials, we can make
quantitative estimates of the rate at which ground-state
molecules are formed via spontaneous decay in our ex-
periments. For example, taking our observed PA rate of
�1:5� 108 s�1 on the � 	 0�, J 	 1 resonance at � 	
�55:63 cm�1, we predict that X 1�� state molecules will
be formed in vibrational levels near v 	 62, bound by
almost 1300 cm�1, at a rate of �5� 105 s�1 per level
[35]. In contrast to the homonuclear case, extremely
deeply bound molecules are formed at large rates via
decay at a spatially coincident inner vibrational turn-
ing point of the ground and excited levels [36]. This
arises from the shorter-range character of the asymptotic
detuning from Rb 5S
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FIG. 4 (color online). Comparison between observed � 	 0�

levels (open circles) and those calculated from fitted RbCs�

potentials (solid circles). Each point corresponds to a rotational
series [e.g., Fig. 2(a)]; the horizontal axis gives the energy Ev;0
of its J 	 0 component, and the vertical axis its rotational con-
stant Bv, defined by Ev;J � Ev;0 	 BvJ�J� 1�. (a) 0� levels;
(b) 0� levels. Inset: j�b;e�R�j

2 for the 0� level at � 	
�55:63 cm�1, showing its strongly mixed character.
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potential as well as the strong 0� channel coupling dis-
cussed above, which together can produce a large proba-
bility density at the inner turning point of the A 1��

excited-state potential. The resulting deeply bound
ground-state molecules in J 	 0; 2 rovibrational levels
could be easily transferred with high efficiency to
X 1��, v 	 0; J 	 0 using a single two-photon Raman
transition; for example, we calculate that the two FCFs
for such a transition, via an intermediate state at ��
3900 cm�1, are both � 10�2. These transitions could
easily be saturated using standard pulsed lasers.

In summary, we have demonstrated photoassociation
into polar RbCs� molecular levels in a laser-cooled, dense
mixture of 85Rb and 133Cs atoms, at large rates up to
�1:5� 108 s�1. Analysis of our spectra indicates mole-
cule formation rates via spontaneous decay into deeply
bound rovibrational levels of the ground X 1�� state as
high as 5� 105 s�1 per level, due to the inherently short-
range character of the RbCs� levels we excite. We plan to
detect these ground-state molecules using resonance-
enhanced two-photon ionization [12–14,16] and to trap
them in an optical dipole trap. A two-photon Raman
transition from one of the well-populated levels to the
rovibrational ground state should allow us to produce a
large sample of stable, ultracold polar molecules.
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Ph.D. thesis. We acknowledge support from NSF Grant
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