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Kac Limit for Finite-Range Spin Glasses
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We consider a finite-range spin glass model in arbitrary dimension, where the strength of the two-
body coupling decays to zero over some distance ��1. We show that, under mild assumptions on the
interaction potential, the infinite-volume free energy of the system converges to that of the Sherrington-
Kirkpatrick one, in the Kac limit � ! 0. This could be a first step toward an expansion around mean-
field theory, for spin glass systems.
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mathematical physics, where one considers variables in- i;j2� i2�
Despite years of debate, the nature of the spin glass
phase of the finite dimensional systems remains a ma-
jor open problem in statistical physics. Two competing
theories have been proposed as candidates to explain spin
glass physics at low temperature: the theory of replica
symmetry breaking [1,2] and the droplet theory [3,4].
The former, based on the analysis of the long range
Sherrington-Kirkpatrick (SK) spin glass, predicts a rich
phenomenology with ergodicity breaking not related to
any physical symmetry breaking and susceptibility
anomalies related to the presence on many pure states.
The latter assimilates spin glasses to some kind of ‘‘dis-
guised ferromagnet’’— albeit with complex phenomen-
ology — where the transition appears as a conventional
symmetry breaking phenomenon. Both theories being
nonrigorous in the applications to finite dimensional sys-
tems, it appears very difficult to solve the question on a
purely theoretical ground. On the other hand, experiments
in 3D and numerical simulations in 3D and 4D fail to give
compelling evidence in favor of one or the other of the
two theories: The times probed in the experiments are too
short to settle the question of the presence or absence of
replica symmetry breaking and the related issue of
asymptotic existence of response anomalies during aging
dynamics, and the length scales probed in the simulations
are too small to infer the behavior of the thermodynamic
limit. Rigorous analysis of finite dimensional systems
turns out to be very hard, and thus far has not been able
to exclude either scenario, although it has produced [5]
considerable conceptual clarification, and shown some of
the subtleties hidden even in the definition of the infinite-
volume limit of these models. Even at the mean-field
level, only very recently, simple interpolation methods
have been introduced [6–8] which have allowed one to
prove [9] the Parisi solution for the SK model. Inter-
polation methods have subsequently been applied also
in the context of finite-range spin glasses, e.g., in [10].

In this Letter, we focus our attention on the Kac limit of
finite-range spin glasses as first considered in [11], and
later studied in [12,13]. Kac models are a classical tool of
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teracting via a potential with finite range � � ��1, which
tends to infinity after the thermodynamic limit is taken.
In a classical paper [14], Penrose and Lebowitz proved
that, for conventional nondisordered systems, the free en-
ergy tends (modulo the Maxwell construction) to the one
of the corresponding mean-field system where the inter-
actions do not decay with distance and scale with the size
of the system. We combine here the idea of the interpolat-
ing model with the idea [14] of dividing the system into
boxes of suitable size to prove the same property in spin
glasses.

Other disordered models with Kac-type interactions
have been studied in previous literature. For instance,
see [15] and references therein for the case of the
Hopfield model.

The model we consider is defined on the d-dimensional
lattice Zd, with Ising spin degrees of freedom �i �
�1; i 2 Zd. Given a finite hypercube � of side L, one
defines the finite volume Hamiltonian as

H���
� ��; h; J� � �

X
i;j2�

�����������������������
w�i� j;��
2W���

s
Jij�i�j � h

X
i2�

�i;

(1)

where W��� �
P

i2Zdw�i;�� and w�r;�� � �d���r� for
some smooth, non-negative function ��r�, decaying suf-
ficiently fast for jrj ! 1 to have W���<1. The parame-
ter � � ��1 is the inverse range of the interaction. The
quenched couplings Jij are independent identically dis-
tributed Gaussian N�0; 1� variables, and we denote by E
the corresponding averages. As is well known [16,17], the
infinite-volume limit of the quenched free energy

f�����; h� � � lim
L!1

1

�j�j
E lnZ���

� ��; h; J� (2)

exists.
On the other hand, the Hamiltonian of the SK spin

glass mean-field model is defined as [18]

HSK
j�j
��; h; J� � �

1����������
2j�j

p X
Jij�i�j � h

X
�i; (3)
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where j�j � Ld is the number of lattice sites in �.
Subadditivity of the corresponding free energy and exis-
tence of its infinite-volume limit

fSK��; h� � � lim
L!1

1

�j�j
E lnZSK

j�j
��; h; J�; (4)

has been proven in [6].
It was recently shown in [13] that the free energy of

model (1) is bounded below by that of SK:

f�����; h� 
 fSK��; h�; (5)

for any value of d, �, h, and �, provided that the potential
��i� j� is non-negative definite, i.e., its Fourier trans-
form is non-negative. For instance, it is immediate to
check this condition for ��i� j� � e�

P
d
��1

ji��j�j; which
for d � 1 is just the potential considered originally by
Kac in [19]. In the present paper, we provide the comple-
mentary bound, which allows to fully characterize the
quenched free energy in the Kac limit � ! 0: Assume
that

P
i2Zd��i�<1. Then, for any � and h, one has

lim
�!0

f�����; h� � fSK��; h�: (6)

If, in addition, all the Fourier components of � are non-
negative, then

lim
�!0

f�����; h� � fSK��; h�: (7)

Together with Talagrand’s recently established proof [9]
of the Parisi ansatz for the SK model, this shows that the
Parisi theory [1] gives the correct free energy for finite
dimensional spin glasses in the Kac limit.

The idea of the proof is to interpolate between the Kac
model in a volume j�j and a system made of a collection
of many independent SK subsystems of volume M � ‘d.
The crucial point, as in [14], is to choose

‘ � � � L; (8)

and to let the three lengths diverge in this order. Let us
divide the box � into subcubes �n of volume M, n �
1; . . . ; j�j=M, and introduce the interpolating partition
function,

Z��t��
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X
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where the Gaussian variables J0 are independent of the J.
Note that

1

j�j
E lnZ��0� �

1

M
E lnZSK

M ��; h; J�; (9)

1

j�j
E lnZ��1� �

1

j�j
E lnZ���

� ��; h; J�: (10)

As we show below, one has
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lim
�!0

lim
L!1

d
dt

1

j�j
E lnZ��t� 
 0 (11)

uniformly for 0 � t � 1. After integration on t between 0
and 1, and taking the large M limit, one finds therefore
the desired result:

��lim
�!0

f�����; h� 
 lim
M!1

1

M
E lnZSK

M ��; h; J�

� ��fSK��; h�: (12)

Denoting as h�i the Gibbs average, the computation of the
t derivative gives, up to terms negligible for large L,
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(13)

where we have used integration by parts on the Gaussian
disorder and the property

lim
L!1

1

j�j

X
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W���

� 1: (14)

Introducing two replicas with identical quenched cou-
plings and spin configurations �1; �2, we can write
(13) as
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(15)

Denoting the partial overlap in the nth subcube as q�n�12 �
1=M

P
i2�n

�1
i �

2
i , the first term of the right-hand side (rhs)

can be rewritten as

�2M
4j�j

X
n

Eh�q�n�12 �
2i: (16)

As for the second term, defining

w�
mn � sup

i2�m;j2�n

w�i� j;��
W���

; (17)

and using the straightforward inequality 2xy � x2 � y2,
one has
1

j�j

X
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w�i� j;��
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Eh�1
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2
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1
j�

2
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M2
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2
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2i:

(18)

In the Kac limit � ! 0, the diagonal terms n � m give a
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vanishing contribution. As for the nondiagonal ones, one
observes that

lim
�!0

X
m��n�

w�
mn �

1

M
; (19)

where the summation runs only on one of the two indices,
so that finally the rhs of (18) is bounded above by

M
j�j

X
n

Eh�q�n�12 �
2i; (20)

apart from a negligible error term. Together with Eqs. (15)
and (16), this proves (11) and therefore the theorem.

As a side remark, it is easy to employ this method,
together with that of [13], to obtain a new proof of the
existence of the thermodynamic limit for the SK model,
independent of the convexity argument developed in [6].

It is possible to generalize this theorem to the ‘‘diluted
Kac spin glass’’ case [13], where each given spin �i
interacts with a finite random number of other spins �j,
which are chosen randomly according to a probability
distribution that decays to zero on the scale �, as ji� jj
diverges. In the Kac limit � ! 1, one can prove that the
free energy of the model converges to that of its mean-
field counterpart, which in that case is the Viana-Bray
model [20]. Full details of the proof are given in [21].

A second generalization of our result is to consider two
replicas of the system, coupled via a term depending on
their mutual overlap. This problem has been considered,
for instance, in [22] and is relevant for the study of glassy
dynamics, especially if applied to models which exhibit
‘‘one-step replica symmetry breaking’’ [1]. The new fea-
ture here is that, at the mean-field level, the free energy of
the coupled system can be expressed [22] in terms of an
effective potential depending on the overlap, which turns
out to be nonconvex. It was argued in [23] that a minimal
modification of the theory in finite dimension requires
restoration of the convexity through the Maxwell con-
struction. This, analogously to the ordered case [14],
emerges naturally in the Kac limit of finite-range models.
We plan to report on this soon [24].

The main interest of the result presented in this Letter
is that it could represent, for spin glasses, a first step
toward an expansion around the mean-field case, which
would hopefully shed some light on the nature of the spin
glass phase for models with finite —albeit large—inter-
action range. This hope is supported by the fact that a
similar program has been successfully carried on re-
cently for nonrandom ferromagnetic spin systems [25–
27] and continuous particle systems [28], showing that in
dimension d 
 2 it is possible to write a controlled ex-
pansion around the � � 0 point, and to prove rigorously
that for large but finite � the system has a phase transition
(broken spin flip or liquid vapor, respectively) with coex-
isting phases.
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