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Quasi-One-Dimensional Bose Gases with a Large Scattering Length
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Bose gases confined in highly elongated harmonic traps are investigated over a wide range of
interaction strengths using quantum Monte Carlo techniques. We find that the properties of a Bose gas
under tight transverse confinement are well reproduced by a 1D model Hamiltonian with contact
interactions. We point out the existence of a unitary regime, where the properties of the quasi-1D Bose
gas become independent of the actual value of the 3D scattering length a3D. In this unitary regime, the
energy of the system is well described by a hard-rod equation of state. We investigate the stability of
quasi-1D Bose gases with positive and negative a3D.
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suppressed for strongly interacting 1D Bose gases [8].
These studies raise the question whether a highly elon-

the scattering length a3D is a function of r0 and V0. In our
calculations, r0 is fixed at a value much smaller than the
In recent years the study of quasi-1D quantum Bose
gases has attracted a great deal of interest. Intriguing
properties of quasi-1D gases, such as the exact mapping
between interacting bosons and noninteracting fermions,
have been predicted [1–3]. A bosonic gas that behaves as
if it consisted of spinless fermions, a so-called Tonks-
Girardeau (TG) gas, cannot be described within mean-
field theory since it exhibits strong correlations; instead, a
many-body framework is called for. While experimental
evidence of quasi-1D behavior has been reported for
bosonic atomic gases under highly elongated harmonic
confinement [4], TG gases have not been observed yet. It
has been suggested, however, that TG gases can be real-
ized experimentally for either low atomic densities or
strong atom-atom interaction strengths. The 3D s-wave
scattering length a3D, and hence the strength of atom-
atom interactions, can be tuned to essentially any value,
including zero and �1, by utilizing a magnetic atom-
atom Feshbach resonance [5,6].

Utilizing a two-body Feshbach resonance, 3D degen-
erate gases with large scattering length a3D have been
studied experimentally and theoretically. For a3D ! �1,
it is predicted that the behavior of the strongly correlated
gas is independent of a3D [7]. For homogeneous 3D Bose
gases, this unitary regime can most likely not be reached
experimentally since three-body recombination is ex-
pected to set in when a3D becomes comparable to the
average interparticle distance. Three-body recombination
leads to cluster formation, and hence ‘‘destroys’’ the gas-
like state. The situation is different for Fermi gases, for
which the unitary regime has already been achieved
experimentally [6]. In this case, the Fermi pressure sta-
bilizes the system even for large ja3Dj. It has been pre-
dicted that three-body recombination processes are
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gated inhomogeneous Bose gas, that is, an inhomogene-
ous quasi-1D Bose gas, is stable as a3D ! �1.

This Letter investigates the properties of a quasi-1D
Bose gas at zero temperature over a wide range of inter-
action strengths within a microscopic, highly accurate
many-body framework. We find that the system (i) is well
described by a 1D model Hamiltonian with contact inter-
actions and renormalized coupling constant [2] for any
value of the 3D scattering length a3D; (ii) behaves like a
TG gas for a critical positive value of a3D; (iii) reaches a
unitary regime for large values of ja3Dj, where the proper-
ties of the quasi-1D Bose gas become independent of the
actual value of a3D and are similar to those of a hard-rod
gas; and (iv) becomes unstable against cluster formation
for a critical negative value of a3D.

Our study is based on the 3D Hamiltonian H3D,
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which describes N spin-polarized mass m bosons under
highly elongated confinement with !z � �!	, where

�� 1. The coordinates 	i �
����������������
x2i � y2i

q
and zi denote,

respectively, the radial and the axial position of the ith
particle, rij � j ~rri � ~rrjj denotes the interparticle distance
between atom i and j, and V	r
 denotes the two-body
interatomic potential. We consider two different poten-
tials: (i) a purely repulsive hard-sphere (HS) potential,
VHS	r
 � 1 for r < a3D, and zero otherwise and (ii) a
more realistic short-range (SR) potential, which can sup-
port two-body bound states, VSR	r
 � �V0=cosh

2	r=r0
,
with well depth V0. For VHS, the s-wave scattering length
a3D coincides with the range of the potential. For VSR, in
contrast, r0 determines the range of the potential, while
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transverse oscillator length, r0 � 0:1a	, where a	 �����������������
�h=m!	

q
. To simulate the behavior of a3D near a field-

dependent Feshbach resonance, we vary the well depth V0

and consequently the scattering length a3D. Importantly,
a3D diverges for particular values of V0 (the inset of Fig. 1
shows one such divergence). At each divergence, a new
two-body s-wave bound state is pulled in. Our numerical
calculations (see below) are performed for the well depths
V0 shown in the inset of Fig. 1.

We consider situations where the bosonic gas described
by Eq. (1) is in the 1D regime for any value of the 3D
scattering length a3D, which implies N�� 1. If the
range of V	r
 is much smaller than a	, it is predicted
[2] that the properties of the 3D gas are well described by
the 1D contact-interaction Hamiltonian H1D,
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(2)

where g1D is an effective coupling constant. The limit
g1D ! 0 corresponds to the weakly interacting mean-
field regime, while g1D ! 1 corresponds to the strongly
interacting TG regime. For positive g1D and vanishing
confinement (!	 � !z � 0), Eq. (2) reduces to the Lieb-
Liniger (LL) Hamiltonian [9], whose gaslike properties
have been studied in detail. For negative g1D and !	 �
!z � 0, Eq. (2) supports clusterlike bound states [10];
little is known about gaslike states in this case.

Below, we solve the many-body Schrödinger equation
for the1D Hamiltonian with confinement, Eq. (2), for posi-
tive and negative g1D, and relate our results to those for
the 3D Hamiltonian, Eq. (1). Considering two bosons in a
highly elongated geometry that interact through a regu-
larized zero-range pseudopotential, Olshanii [2] shows
that the effective 1D coupling constant g1D can be ex-
pressed in terms of the known 3D scattering length a3D,
D
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FIG. 1. g1D [dashed line, Eq. (3)] and a1D [solid line, Eq. (4)]
as a function of a3D. A vertical arrow indicates the value of a3D
where g1D diverges, ac3D=a	 � 0:9684. Horizontal arrows in-
dicate the asymptotic values of g1D and a1D, respectively, as
a3D ! �1 (g1D � �1:9368a	 �h!	 and a1D � 1:0326a	).
Inset: a3D as a function of the well depth V0 for VSR	r
.
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g1D �
2 �h2a3D
ma2	

1

1� Aa3D=a	
; (3)

where A � j�	1=2
j=
���
2

p
� 1:0326. Alternatively, g1D can

be expressed through the effective 1D scattering length
a1D; g1D � �2 �h2=	ma1D
 [2], where

a1D � �a	

�
a	
a3D

� A
�
: (4)

For a3D > 0 (but a3D � a	), g1D approaches the unrenor-
malized coupling constant, g01D � 2 �h2a3D=	ma2	
, which
is obtained by averaging the 3D coupling constant g3D �
4� �h2a3D=m over the transverse oscillator ground state
(see, e.g., Ref. [3]). For these values of a3D, the 1D
Hamiltonian given in Eq. (2) with g1D replaced by g01D
describes a quasi-1D system accurately [11].

For a3D * a	 and for negative a3D, in contrast, the
confinement induced renormalization becomes impor-
tant, and the effective 1D coupling constant g1D and
scattering length a1D, Eqs. (3) and (4), have to be used.
Figure 1 shows g1D (dashed line) and a1D (solid line) as a
function of a3D. At the critical value ac3D � 0:9684a	
(indicated by a vertical arrow in Fig. 1), g1D diverges
while a1D goes through zero. At the 3D resonance, that is,
for a3D ! �1, g1D and a1D each reach an asymptotic
value (g1D � �1:9368a	 �h!	 and a1D � 1:0326a	, re-
spectively, indicated by horizontal arrows in Fig. 1).
Tuning a3D to large values hence allows a unitary
quasi-1D regime, where g1D and a1D are independent of
a3D, to be entered.

We solve the Schrödinger equation for the many-body
3D Hamiltonian, Eq. (1), numerically using the diffusion
quantum Monte Carlo (DMC) technique. Our interest is
in the lowest gaslike many-body state. For VHS, the lowest
gaslike state ofH3D coincides with the many-body ground
state; to describe this state we can hence use the ‘‘stan-
dard’’ DMC technique (see, e.g., [12]). For VSR, in con-
trast, the many-body ground state is a clusterlike bound
state. To describe the lowest-lying gaslike state, i.e., an
excited state, we hence use the fixed-node DMC (FN-
DMC) method [13]. For a given many-body nodal sur-
face, the FN-DMC method allows the Schrödinger
equation to be solved for approximate excited states. For
N � 2, we obtain the exact nodal surface by direct
diagonalization. Assuming that the scattering properties
between each atom pair are unaltered by the presence of
other atoms, we then use the N � 2 nodal surface to
construct the many-body nodal surface. For dilute
quasi-1D gases we expect that the FN-DMC approach
as implemented here results in highly accurate many-
body energies.

Figure 2 shows the resulting 3D energy per particle,
E=N � �h!	, as a function of a3D for N � 5 under quasi-
1D confinement, � � 0:01, for the hard-sphere and the
short-range two-body potential, VHS (diamonds) and VSR

(asterisks), respectively. For small a3D=a	, the energies
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D
D
D
D

D

D

D

D
D

D

D

D

D

FIG. 2. 3D DMC energy per particle calculated using VHS

(diamonds) and VSR (asterisks), respectively, together with 1D
DMC energy per particle calculated using g1D [squares, Eq. (3)]
and g01D (plusses), respectively, as a function of a3D [(a) linear
scale; (b) logarithmic scale] for N � 5 and � � 0:01. The
statistical uncertainty of the DMC energies is smaller than
the symbol size. Dotted and solid lines show the 1D energy per
particle calculated within the local density approximation
(LDA) for g01D (using the LL equation of state) and for g1D,
Eq. (3) (using the LL equation of state for g1D > 0, and the
hard-rod (HR) equation of state for g1D < 0), respectively. A
dashed horizontal line indicates the TG energy, and a vertical
arrow the position where g1D, Eq. (3), diverges.
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for these two two-body potentials agree within the
statistical uncertainty. For a3D * a	, however, clear dis-
crepancies are visible. The DMC energies for VSR cross
the TG energy per particle (indicated by a dashed hori-
zontal line), E=N � �h!	 � �h!	�N=2, very close to the
value ac3D � 0:9684a	 [indicated by a vertical arrow in
Fig. 2(b)], while the energies for VHS cross the TG energy
per particle at a notably smaller value of a3D.

To compare our results obtained for the 3D Hamil-
tonian, H3D, with those for the 1D Hamiltonian, H1D, we
also solve the Schrödinger equation for H1D, Eq. (2). For
positive values of the coupling constant g1D we calculate
the many-body ground state energy by the exact DMC
method. For g1D < 0, however, the 1D Hamiltonian sup-
ports many-body bound states, and, as in the 3D case, we
use the FN-DMC method to describe the lowest-lying
gaslike state. For N � 2 and g1D < 0, the first excited
state of the Schrödinger equation for H1D, Eq. (2), has a
node at z12 � a1D. To solve the many-body Schrödinger
equation for H1D with negative g1D for the lowest gaslike
state by the FN-DMC technique, we parametrize our
many-body nodal surface in terms of a1D. This many-
body nodal surface is expected to be good if the density
of the gas is low.
030402-3
In addition to the 3D energy per particle, Fig. 2 shows
the resulting 1D energy per particle obtained by solving
the Schrödinger equation for H1D, Eq. (2), for the renor-
malized coupling constant g1D [squares, Eq. (3)], and the
unrenormalized coupling constant g01D (plusses), respec-
tively. The 1D energies calculated using the two different
coupling constants agree well for small a3D, while clear
discrepancies become apparent for larger a3D. Impor-
tantly, the 1D energies calculated using the renormalized
1D coupling constant g1D agree well with the 3D energies
calculated using the short-range potential VSR (asterisks)
up to very large values of the 3D scattering length a3D,
and also for negative a3D. In contrast, at large a3D the 1D
energies deviate clearly from the 3D energies calculated
using the hard-sphere potential VHS (diamonds). We con-
clude that the renormalization of the effective 1D cou-
pling constant g1D and the 1D scattering length a1D are
crucial to reproduce the results of the 3D Hamiltonian
H3D when a3D * a	 and when a3D is negative. Small
deviations between the 1D energies calculated using the
renormalized 1D coupling constant g1D and the 3D en-
ergies calculated using the short-range potential VSR

remain; we attribute these to the finite range of VSR.
If the size of the cloud is much larger than the har-

monic oscillator length az, where az �
���������������
�h=m!z

p
, it has

been shown that the properties of the 1D LL Hamiltonian
H1D, g1D > 0, are well described by a simple equation of
state using the LDA [14]. For g1D < 0, we instead apply
the equation of state for 1D HRs. Recall that the many-
body nodal surface of the lowest-lying gaslike state of
H1D with g1D < 0 is well parametrized by a1D. For zij >
a1D, the corresponding wave function coincides with that
of N 1D hard rods of size a1D. For small values of the 1D
gas parameter, n1Da1D � 1, where n1D denotes the linear
density, we hence expect that the lowest-lying gaslike
state of the 1D many-body Hamiltonian with g1D < 0 is
well described by a system of hard rods of size a1D. The
exact energy per particle of the uniform hard-rod system
is given by E=N � 	�2 �h2n21D=6m
=	1� n1Da1D


2 [1]. For
trapped systems with N�� 1 we obtain the expansion
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The first term corresponds to the energy per particle in
the TG regime. Similarly, the linear density in the center
of the cloud is to lowest order given by the TG result,
n1D �

����������
2N�

p
=	�a	
. In the unitary limit, that is, for

a1D=a	 � 1:0326, expression (5) becomes independent
of a3D and depends only on N�.

Lines in Fig. 2 show the resulting 1D energies per
particle for the LL equation of state (g1D > 0) as well
as for the HR equation of state (g1D < 0) calculated
within the LDA. Remarkably, the LDA energies nearly
coincide with the 1D many-body DMC energies (plusses
and squares, respectively); finite-size effects play a role
030402-3
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FIG. 3. VMC energy per particle as a function of the varia-
tional parameter  for N � 5, � � 0:01, and a1D=a	 � 1:0326
(plusses), 2 (asterisks), 3 (diamonds), and 4 (triangles).
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only for a3D � a	. Our calculations establish for the first
time that a simple treatment, i.e., a HR equation of state
treated within the LDA, describes trapped quasi-1D gases
with negative coupling constant g1D well over a wide
range of the 3D scattering length a3D. For a3D!�0, that
is, for large a1D, the HR equation of state using the LDA
cannot properly describe trapped quasi-1D gases, which
are expected to become unstable against formation of
clusterlike many-body bound states for a1D � 1=n1D. We
hence investigate the regime with negative a3D in more
detail within a many-body framework.

By comparing with results for the 3D Hamiltonian,
Eq. (1), we have shown above that the 1D Hamiltonian
H1D, Eq. (2), provides an excellent description of quasi-
1D gases.We hence base our stability analysis of quasi-1D
gases with large effective 1D scattering length a1D on
H1D. We solve the many-body Schrödinger equation for
H1D using the variational quantum Monte Carlo (VMC)
method. Our variational N-particle Bijl-Jastrow–type
wave function consists of one- and two-body terms. The
one-body terms are written as a function of a single
variational parameter  , which determines the size of
the atomic gas. The two-body term is parametrized by
a1D and explicitly accounts for correlations.

Figure 3 shows the resulting VMC energy per particle
for N � 5 and � � 0:01 as a function of the variational
parameter  (Gaussian width) for four different a1D. For
a1D=a	 � 1 and 2, Fig. 3 shows a local minimum at
 min � az. The minimum VMC energy nearly coincides
with the essentially exact DMC energy, which suggests
that our variational wave function provides a highly
accurate description of the quasi-1D many-body system.
The energy barrier at  � 0:2az decreases with increas-
ing a1D and disappears for a1D=a	 � 3. We interpret this
vanishing of the energy barrier as an indication of insta-
bility [15]. For small a1D, the energy barrier separates the
gaslike state from clusterlike bound states. For larger a1D,
this energy barrier disappears and the gaslike state be-
comes unstable against cluster formation.

We additionally performed variational calculations for
larger N and different �. We find that the onset of insta-
bility of quasi-1D Bose gases can be described by the
product of the 1D scattering length a1D and the linear
density at the trap center n1D. To be specific, our many-
body calculations suggest that a quasi-1D gas is stable for
a1Dn1D & 0:35 and becomes unstable for a1Dn1D * 0:35.
Our analysis suggests that the quasi-1D unitary regime
can be reached experimentally. By tuning the 3D scatter-
ing length, it is further possible to investigate the onset of
instability. By reducing � one should be able to stabilize
relatively large quasi-1D systems.

In conclusion, we investigated the energetics of a Bose
gas under highly elongated harmonic confinement over a
wide range of the 3D scattering length. We find that the
quasi-1D gas can be described by a many-body 1D model
Hamiltonian with zero-range interactions and renormal-
ized coupling constant. For a3D ! �1, the quasi-1D gas
030402-4
enters a unitary regime, where all properties of the sys-
tem are independent of a3D. In the vicinity of the unitary
regime, the quasi-1D system behaves like a gas of HRs.
For negative a3D, quasi-1D gases become unstable against
cluster formation for a critical value of a1Dn1D.
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