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Most complex networks serve as conduits for various dynamical processes, ranging from mass
transfer by chemical reactions in the cell to packet transfer on the Internet. We collected data on the time
dependent activity of five natural and technological networks, finding that for each the coupling of the
flux fluctuations with the total flux on individual nodes obeys a unique scaling law. We show that the
observed scaling can explain the competition between the system’s internal collective dynamics and
changes in the external environment, allowing us to predict the relevant scaling exponents.
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FIG. 1 (color online). (a) Time dependent traffic on three
Internet routers of the Mid-Atlantic Crossroads network, whose
activity is monitored by the Multi Router Traffic Grapher
software (MRTG). The figure shows the number of bytes per
second for each of the routers in 5 min intervals for a two day
period. (b) Streamflow, measured in cubic feet per second, on
three rivers in the U.S. river basin, based on data collected by
the U.S. Geological Survey in 2001. On the right of each plot
we show the time average of the flux hfi displayed as horizontal
dotted lines superposed on the graphs, and the dispersion, �,
7 orders of magnitude with � � 1=2 [Fig. 2(a)]. In a
microprocessor, in which the connections between logic

for each signal, indicating orders of magnitude differences in
both flux and dispersion between nodes of the same network.
Recent advances in uncovering the mechanisms shap-
ing the topology of complex networks [1] are overshad-
owed by our lack of understanding of common organizing
principles governing network dynamics. In particular, we
are far from understanding how the collective behavior of
often millions of nodes contribute to the observable dy-
namical features of a given system, prompting us to
continue the search for dynamical organizing principles
that are common to a wide range of complex systems. To
make advances in this direction we need to complement
the available network maps with data on the time resolved
activity of each node and link.

Traditional approaches to complex dynamical systems
focus on the long time behavior of at most a few dynami-
cal variables, characterizing either a single node or the
system’s average behavior. To simultaneously characterize
the dynamics of thousands of nodes we investigate the
coupling between the average flux and fluctuations. Our
measurements indicate that in complex networks there is a
characteristic coupling between the average flux hfii and
dispersion �i of individual nodes (Fig. 1). To quantify this
observation we plot �i for each node i in function of the
average flux hfii of the same node (Figs. 2 and 3). We find
that for five systems for which extensive dynamical data
is available the dispersion depends on the average flux as

�� hfi�: (1)

Most intriguing, however, is the finding that the dynami-
cal exponent � is in the vicinity of two distinct values,
� � 1=2 (Fig. 2) and � � 1 (Fig. 3), suggesting that
diverse real systems can display two distinct dynamical
universality classes.

The � ’ 1=2 systems (Fig. 2): The Internet, viewed as a
network of routers linked by physical connections, serves
as a transportation network for information, carried in
the form of packets [2]. Daily traffic measurements of 374
geographically distinct routers indicate that the relation-
ship between traffic and dispersion follows (1) for close to
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gates generate a static network [3], information is carried
by electric currents. At each clock cycle a certain subset
of connections i are active, the relevant dynamical vari-
able fi�t� taking two possible values, 0 or 1. The activity
during 8862 clock cycles on 462 nodes of the Simple12
microprocessor indicates that the average flux and fluctu-
ations follow (1), with �m � 1=2 [Fig. 2(b)].

The � ’ 1 systems (Fig. 3): The WWW, an extensive
information depository, is a network of documents linked
by URLs [4]. As many websites record individual visits,
surfers collectively contribute to a dynamical variable
fwi �t� that represents the number of visits site i receives
2004 The American Physical Society 028701-1
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FIG. 2 (color online). The relationship between fluctuations
(�) and the average flux (hfi) for the � � 1=2 systems.
(a) Time resolved information for 374 Internet routers of the
Mid-Atlantic Crossroads, ABILENE network, MIT routers,
UNAM routers, all Brazilian RNP backbones, and dozens of
smaller routers on the Internet, covering for each node two
days of activity with 5 min resolution. (b) The activity of the
462 signal carriers of the 12-bit Simple12 microprocessor,
recorded over 8862 clock cycles.
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during day t. We studied the daily breakdown of visitation
for 30 days for 3000 sites scattered over three continents,
determining for each node i the average hfwi i and disper-
sion �w

i . As Fig. 3(a) shows, �w
i and hfwi i follow (1) over 3

orders of magnitude with dynamical exponent �w � 1.
The highway system is an example of a transportation
network, the relevant dynamical variable being the traffic
at different locations.We analyzed the daily breakdown of
traffic measurements at 127 locations on Colorado and
Vermont highways. The results, shown in Fig. 3(b), again
document scaling spanning over 5 orders of magnitude
with �h � 1. Finally, the river network is a natural trans-
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FIG. 3 (color online). The relationship between fluctuations
(�) and the average flux (hfi) for systems belonging to the � �
1 class. (a) Daily visitations on websites collected using the
Nedstat web monitor. We analyzed daily traffic for a 30 day
period for 1000 sites in USA (circles), Brazil (squares), and
Japan (triangles). (b) The daily streamflow of 3 945 rivers on
the U.S. river basin during the year of 2001 is recorded by the
U.S. Geological Survey. (c): Daily traffic on Colorado and
Vermont highways representing the daily number of cars pass-
ing through observation points on 127 highways from 1998
to 2001.
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portation system [5], whose dynamics is probed via time
resolved measurements on the stream of several U.S.
rivers on 3495 different locations. While these fluctua-
tions are driven by weather patterns, the relationship
between the average stream and its fluctuations again
follows (1) with �r � 1 [Fig. 3(c)].

To understand the origin of the observed dynamical
scaling law (1) we study a simple dynamical model that
incorporates some key elements of the studied systems.
While the topology of these systems vary widely, from a
tree (rivers) to a scale-free network (WWW, Internet), a
common feature of the studied systems is the existence of
a transportation network that channels the flux toward
selected nodes. Therefore, we start with a network of N
nodes and L links, described by an adjacency matrix Mij,
which we choose to describe either a scale-free or a
random network [1]. As the dynamics of the studied
systems varies widely, we study two different dynamical
rules. model 1 considers the random diffusion of W
walkers on the network, such that each walker that
reaches a node i departs in the next time step along one
of the links the node has. Originally each walker is placed
on the network at a randomly chosen location and re-
moved after it performs M steps, mimicking in a highly
simplified fashion a human browser surfing the Web for
information. To probe the collective transport dynamics
counters attached to each node record the number of visits
by various walkers. To capture the day to day fluctuations
on individual nodes we repeat independently D times
the diffusion of W walkers on the same fixed network
and denote by fi�t� the number of visits to node i on day
t � 1; . . . ; D. As Fig. 4(a) indicates, the average flux and
fluctuations follow (1) with � � 1=2. In model 2 we
replaced the diffusive dynamics with a directed flow
process. In this case each day t we pick W randomly
selected pairs of nodes, designating one node as a sender
and the other as a recipient, and send a message between
them along the shortest path. Counters placed on every
node count the number of messages passing through. This
dynamics mimics, in a highly schematic fashion, the low
density traffic between two nodes on the Internet. As
Fig. 4(d) shows, we find that model 2 also predicts � �
1=2, indicating that the � � 1=2 exponent is not a par-
ticular property of the random diffusion model, but it is
shared by several dynamical rules.

We can understand the origin of the � � 1=2 exponent
if we inspect the nature of fluctuations in model 1. In the
M � 1 limit walkers arrive to randomly selected nodes
but fail to diffuse further, reducing the dynamics to
random deposition, a well-known model of surface
roughening [7]. Therefore, the average visitation on each
node grows linearly with time, hfi � t, and the dispersion
increases as �� t1=2, providing � � 1=2 [7]. While
for M > 1 diffusion generates correlations between the
nodes, we find that the fluctuations on the individual
nodes, �int

i , continue to be dominated by the internal
028701-2
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FIG. 4 (color online). In model 1 on each ‘‘day’’ t we release
W�t� � hWi 
 ��t� walkers on randomly selected nodes and
allow them to perform M � 103 random diffusive steps, where
��t� is a uniformly distributed random variable between 	�W
and �W and hWi � 104. (a) The figure shows the ��hfi� curves
for �W � 0; 20; 40; 80; 100; 200; 800; 1000; 4000; 10 000 from
top to bottom. (b) The dependence of the exponent � on �W,
obtained by fitting the �i versus hfii curves shown in (a). Note
that while the figure shows a gradual transition, the transition
in infinite systems should be sharp. (c) Average fluctuations
h�ii, obtained by averaging �i over all nodes i in the system,
shown in function of the amplitude of the external driving
force �W. While under �W 
 102 the magnitude of h�ii is
independent of �W, for large �W the fluctuations increase
rapidly, indicating that the network dynamics is externally
driven. (d)–(f) The same as in (a)–(c), but for model 2, where
the diffusive dynamics was replaced by message passing. W
was again chosen from an uniform distribution of width �W
and average hWi � 104. In all simulations we used a scale-free
network [6] with � � 3 and 104 nodes.
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randomness of the walker arrival and diffusion process,
following the � � 1=2 dynamical exponent [8].

To understand the origin of the second (� � 1) univer-
sality class, we note that in real systems the fluctuations
on a given node are determined not only by the system’s
internal dynamics, but also by changes in the external
environment. To incorporate externally induced fluctua-
tions we allow W(the number of walkers and messages in
models 1 and 2), to vary from one day to the other.
Assuming that the day to day variations of W�t� define
a dynamic variable chosen from an uniform distribution
in the interval �W 	�W;W 
 �W�, for �W � 0 we
recover � � 1=2. However, when �W exceeds a certain
028701-3
threshold, in both models the dynamical exponent
changes to � � 1 [Figs. 4(b) and 4(e)].

To understand the origin of the � � 1 exponent we
notice that on each node the observed day to day fluctua-
tions have two sources. For �W � 0 we have only inter-
nal fluctuations, coming from the fact that under random
diffusion (or random selection of senders and receivers
in model 2) the number of walkers (messages) that visit
a certain node displays day to day fluctuations. For
�W � 0 the fluctuations have an external component as
well, as when the total number of walkers (messages)
change from one day to the other, they proportionally
alter the visitation of the individual nodes as well. If the
magnitude of the day to day fluctuations is significant,
they can overshadow the internal fluctuations �int

i .
Indeed, if in a given time frame the total number of
walkers or messages doubles, the flux on each node is
expected to grow proportionally, a potentially much
larger variation than the changes induced by the internal
fluctuations. Therefore, for �W � 0 the external driving
force, determined by the time dependent W�t�, contrib-
utes to the daily fluctuations with a dispersion
�dr��W� �

�������������������������������������
hW�t�2i 	 hW�t�i2

p
. The total fluctuations

for node i are therefore given by �2
i � ��int

i �2 
 ��ext
i �2.

As the effect of the driving force is felt to a different
degree on each node, we can write �ext

i � Ai�dr��W�,
where Ai is a geometric factor capturing the fraction
of walkers channeled to node i, and depends
only on the position of node i within the network. When
�W � 0, the external component �dr vanishes, resulting
in �int

i � aihfii
1=2, as discussed earlier, where ai is an

empirically determined coefficient. When �W is suffi-
ciently large, so that Ai�

dr��W� � �int
i , then the fluctu-

ations on each node are dominated by the changes in the
external driving force. In this limit a node’s dynamical
activity mimics the changes in the external driving force,
allowing us to approximate the flux at node i with fi�t� �
AiW�t�. In this case we have hfii � AihW�t�i and hf2i i �

A2
i hW�t�2i, giving �i �

�������������������������
hf2i i 	 hfii2

q
� Ai�dr. As �dr

and hW�t�i are time independent characteristics of
the external driving force, we find �i ’ �ext

i �
��dr=hW�t�i�hfii, providing the observed coupling (1)
with � � 1. Note that this derivation is independent of
the network topology or the transport process, predicting
that any system for which the magnitude of fluctuations in
the external driving force exceeds the internal fluctua-
tions will be characterized by an � � 1 exponent.

These calculations imply that the fluctuations on a
given node can be decomposed into an internal and an
external component as

�2
i � a2i hfii 


�
�dr

hW�t�i
hfii

�
2
: (2)

Therefore, increasing the amplitude of fluctuations �W
should induce a change from the � � 1=2 intrinsic or
028701-3
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endogenous to the � � 1 driven behavior. To confirm the
validity of this prediction, in Figs. 4(c) and 4(f) we show
the average fluctuation ���i over all nodes in function of the
amplitude �W of the driving force. For both models we
find that for small �W values ���i remains unchanged, as in
this regime ���i � �int

i > �ext
i . However, after �W exceeds

a certain threshold, ���i changes behavior, monotonically
increasing with �W. In this second regime the fluctua-
tions are driven by external forces, ���i � �ext

i � �AAi�
dr,

and according to (2) we should observe � � 1. Indeed, we
find that in both models the transition from the constant
to the increasing ���i regime [Figs. 4(c) and 4(f)] coincides
with the crossover from the � � 1=2 to � � 1 [Figs. 4(b)
and 4(e)]. Note, however, that the gradual transition ob-
served in Figs. 4(b) and 4(e) from � � 1=2 to � � 1 is a
numerical artifact of the fitting process: in the transition
regime the � � 1=2 and � � 1 scaling coexist on the
same ��hfi� curve, giving an exponent that is different
from 1=2 or 1. In reality the transition between the two
regimes is sharp. To understand to what degree our find-
ings depend on the specific simulation and model details
we changed the topology from scale-free [6] to random
network and from undirected to directed network, as well
as altering the nature of the external fluctuations by keep-
ing W constant in model 1 but forcing the number of
steps, M, to play the role of the stochastic external driving
force. For each version we recover the transition between
the � � 1=2 and � � 1 when the amplitude of the exter-
nal fluctuations exceeds a certain threshold [10].

These results indicate that the � � 1=2 exponent cap-
tures an endogenous behavior, determined by the system’s
internal collective fluctuations. In the studied model in-
ternal fluctuations are rooted in the randomness in the
walkers’ arrival and diffusion; on the Internet they origi-
nate in the choices users make to where and when to send
a message; for the computer chip they come from the
alternating utilization of the various circuits, as required
by the performed computation. In contrast, the � � 1
exponent describes driven systems, in which the fluctua-
tions of individual nodes are dominated by time depen-
dent changes in the external driving forces. Therefore,
fluctuations of World Wide Web traffic, river streams and
highway traffic are driven by such external factors as
daily variations in the number of Web surfers, seasonal
or daily changes in precipitation, or daily variations in the
number of drivers, respectively.

Of the two observed exponents our derivation indicates
that � � 1 is universal, being independent of the nature of
the internal dynamics or the network topology. There are
no firm restrictions, however, on the scaling of the inter-
nal dynamics, raising the possibility that self-organized
processes could lead to collective fluctuations that
are characterized by � exponents different from 1=2.
028701-4
Empirical evidence for potential intermediate � values
comes from ecology, where (1) describes spatial and
temporal variations of populations [11]. It is much
debated, however, whether the observed scaling repre-
sent valid exponents, or only crossovers between � � 1=2
and 1 [12].

We are indebted to Jay Brockman and Steven
Balensiefer for providing the data on the computer chip.
This research was supported by Grants from NSF, NIH,
and DOE.
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