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Role of Synaptic Filtering on the Firing Response of Simple Model Neurons
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During active states of the brain neurons process their afferent currents with an effective membrane
time constant much shorter than its value at rest. This fact, together with the existence of several
synaptic time scales, determines to which aspects of the input the neuron responds best. Here we present
a solution to the response of a leaky integrate-and-fire neuron with synaptic filters when long synaptic
times are present, and predict the firing rate for all values of the synaptic time constant. We also discuss
under which conditions this neuron becomes a coincidence detector.
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where I�t� is the total synaptic current. In the case of a
_zz � �

�s
�

�s
��t�: (6)
Neurons process input currents originated from presy-
naptic spikes produced by many other neurons. One of the
first processing steps is the synaptic filtering of the cur-
rent with characteristic times �s which take a wide range
of values that, for some synaptic types, can be quite long
compared to the resting membrane time constant [1].
Long synaptic time constants also appear naturally in
active states of the brain because the effective membrane
time constant �m is significantly reduced due to the net
increase in conductance resulting from background activ-
ity [2,3]. It is plausible that in these active states the
effective membrane time constant becomes a dynamical
variable that can operate in regimes where it is the short-
est [3,4] as well as in regimes where it is an intermediate
time scale [3]. Since synapses smooth current fluctua-
tions, the precise relation between the effective membrane
and synaptic time constants is specially relevant when the
mean depolarization is below threshold, where the neuron
response is mainly produced by current fluctuations. A
quantitative description of the neuron response for any
relation between the values of the synaptic and the effec-
tive membrane time constants is then desirable. Here we
obtain the solution for the output firing rate of a model
neuron driven by Poisson inputs presenting two important
cases. In the first, �m is the shortest time scale. In the
second, we deal with a very short synaptic time con-
stant —an infinitely fast synapse —while all the other
synaptic types have �s > �m. Using a procedure intro-
duced in [5] we also show that an interpolation of the
response between the short [6,7] and the long �s limits
found here describes quite well the output firing rate of a
leaky integrate-and-fire (LIF) neuron with synaptic filter-
ing. Other work dealing with the effect of a single filter on
the neural response can be found in [8,9]. However, in [8]
an approximation valid in a rather restricted region of
input parameters is used, while in [9] a different current
statistics is considered.

The membrane potential V of the model neuron obeys

�m _VV � �V � �mI�t�; (1)
0031-9007=04=92(2)=028102(4)$22.50 
single synaptic type it is

�s _II�t� � �I�t� � J
X
i;k

��t� tki �: (2)

Here tki labels the random time of the kth spike from the
ith presynaptic neuron firing with Poisson statistics. J=�s
is the size of the postsynaptic current generated by a
single spike. A spike is evoked whenever V hits a thresh-
old value �, from where it is reset to a hyperpolarized
value, H.

In what follows we obtain the neuron response for two
important situations: (i) there is only one slow synaptic
type; (ii) �m lies between a single fast and a single slow
filter. The most general cases where �m is intermediate
between any number of fast and any number of slow filters
can be derived from them. Specifically, when there are not
fast filters, the neuron behaves as in (i), while if there is at
least one fast filter, it behaves as in (ii).

(i) One slow synaptic type.—Since the number of pre-
synaptic spikes is normally quite large and the evoked
postsynaptic potentials are very small compared to the
firing threshold, the spike train in Eq. (2) can be approxi-
mated [10] by its mean � and variance �2 as

�s _II�t� � �I�t� ��� ���t�; (3)

where ��t� is a Gaussian white noise with zero mean and
unit variance. The filter introduces exponential correla-
tions in the current with a correlation time �s [6,11],

h�I�t� ����I�t0� ���i �
�2

2�s
e��jt�t0j=�s�: (4)

It is convenient to rewrite Eqs. (1) and (3) by performing
the linear transformations I � �� z �=

�������
2�s

p
and V �

��m � x �
�����������
�m=2

p
:
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x
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Note that the average of z2�2=2�s gives the current
fluctuations. In these units the threshold and reset
potentials read �̂� �

���
2

p
�����m�=�

������
�m

p
and ĤH ����

2
p

�H���m�=�
������
�m

p
. The stationary Fokker-Planck

equation (FPE) [12] associated with Eqs. (5) and (6) is�
@
@x

�x� �z� � �2Lz

�
P�x; z� � ��mJ�z���x� ĤH�;

(7)

where � �
�������������
�m=�s

p
and Lz � �@=@z�z� �@2=@2z�. P�x; z�

is the stationary probability density of having the neuron
in the state �x; z�. The source current J�z� accounts for the
reset effect: the flow of probability escaping at the thresh-
old is reinjected at the reset potential with the same rate
and distribution in z that it had when it escaped. J�z� has
to be determined in a self-consistent way, that is, it has to
match the escaping current of the LIF neuron, which is
the x component of the probability current vector evalu-
ated at threshold. The equation relating J�z� and P�x; z� is
obtained by writing Eq. (7) as the divergence of a proba-
bility current vector ~JJ�x; z� [12]. One easily finds that its
x-axis component is �mJx�x; z� � ��x� �z�P�x; z�, which
after setting x � �̂� yields

J�z� �
1

�m
���̂�� �z�P��̂�; z�: (8)

The output firing rate is then computed as (zmin � �̂�=�)

�out �
Z 1

zmin

dzJ�z�: (9)

The escape current J�z� is zero below zmin because there
cannot be flow of probability from above �̂�. Equations (7)
and (8) have to be solved with appropriate boundary
conditions. It is readily checked that a perturbative ex-
pansion of P�x; z� and J�z� in powers of � is not defined in
the subthreshold regime, although it works well if the
mean depolarization ��m is above threshold. Below
threshold the firing of the neuron is mainly controlled
by the fluctuations, but since the filter smooths these
fluctuations, they become quite weak for long �s. In
fact, one can see from Eq. (5) that the fluctuations of
the membrane potential are of the order of �2. This
suggests a procedure to regularize the equations: one
should first keep the membrane fluctuations finite and
only at the end, after the regular part of the problem
has been dealt with in a perturbative fashion, one can
safely give them their correct value. This idea is imple-
mented by replacing Eq. (5) by

_xx �
1

�m
��x� �z�; (10)

and setting the lower integration limit in Eq. (9) to zmin �
�̂�=�. Equation (6) is left unchanged. This procedure
alters only slightly the system of Eqs. (7) and (8): the
terms where �zP�x; z� appears become �zP�x; z�.
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The perturbative expansion in powers of � is now done
at fixed �. Only at the end of the calculation � is given its
correct value � � � �

�������������
�m=�s

p
. To proceed with the ex-

pansion we write

P � P0 � �2P1 � . . . ; J � J0 � �2J1 � . . . ; (11)

and replace these expressions in Eqs. (7) and (8) (with �z
in the place of �z, as we just said). We have now to impose
order by order the conditions

Pn��̂�; z� � 0 8z < �̂�=�; (12)

Jn�z� � ��1
m ��z� �̂��Pn��̂�; z�; (13)

Z �̂�

�1
dx

Z 1

�1
dz Pn�x; z� � �n;0; (14)

lim z!�1zPn ! 0; limx!�1xPn ! 0; (15)

where �n;0 � 1 for n � 0 and it is 0 otherwise. Integrating
Eq. (7) over x and using Eqs. (12)–(15), we obtain the
useful constraint

Z �̂�

�1
dxPn�x; z� � �n;0

e�z
2=2�������
2 

p ; (16)

which says that the marginal distribution of z has to be a
normalized Gaussian. It is immediate to show that

@
@x

�x� �z�Pn � LzPn�1 � �mJn�z���x� ĤH� � 0;

(17)

with P�1 � 0. We are interested in the leading order, thus
by solving the equation for n � 0 we have

P0�x; z� �
�mJ0�z�H �x� ĤH�

�z� x
�D�z���x� �z�H ��̂�=�� z�; (18)

where D�z� depends only on z. H �t� � 1 when t > 0 and
it is zero otherwise. Replacing P0 into the constraint (16)
gives D�z� � e�z

2=2=
�������
2 

p
and

J0�z� �
e�z

2=2�������
2 

p F 0�ĤH� �z; �̂�� �z�; (19)

where we have defined F�1
0 �a; b� � �m log�a=b�. At this

step we proceed to replace � by � �
�������������
�m=�s

p
. Introducing

J0�z� into Eq. (9) leads to the following formula for the
output firing rate at zeroth order:

�out �
Z 1

�̂�=�

dz�������
2 

p e�z
2=2 F 0�ĤH � �z; �̂�� �z�: (20)

This remarkable result has a clear intuitive meaning. In
the �s ! 1 limit, the variable z changes very little for a
time �m. It can then be assumed that the neuron experi-
ences a drift �x� �z with constant z. At fixed z, F 0�ĤH �
�z; �̂�� �z� is the firing rate of a LIF neuron driven by a
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FIG. 1. Membrane potential V�t� (top) and z�t� (bottom) dur-
ing 1:4 s for one synaptic type with �s � 1; 20, and 50 ms, from
left to right. The straight lines in the bottom plots represent
zmin � �̂�=�. Parameters have been chosen to produce in all
cases approximately the same firing rates (�12 Hz) and are
�m � 10 ms, � � 1, and H � 0 (in arbitrary units), � �
80 s�1, and �2 � 1:5; 10, and 25 s�1 from left to right (zmin �
0:63 in the last two cases). The coefficients of variation of the
interspike intervals are, from left to right, 0:7; 1:1, and 1:5.
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noiseless effective current Ieff � �� z�=
�������
2�s

p
[10].

Because the stationary distribution of z is Gaussian with
unit variance, and because the current at the threshold
has to be positive, Eq. (20) is readily obtained by averag-
ing F 0�ĤH� �z; �̂�� �z� over z.

It is also remarkable that Eq. (20) does not admit an
expansion in powers of ��1

s in the full space of input
parameters. In the subthreshold regime (�̂� > 0) the ex-
pansion is not defined, as can be seen by evaluating the
function and its derivatives at long �s. Because the neuron
fires only if z > zmin and because, for long �s, zmin takes a
value close to 1 standard deviation of the Gaussian dis-
tribution of z, the neuron fires only when low probability
fluctuations occur. It is concluded that, in the subthres-
hold regime, the neuron behaves as a coincidence detector
instead of as a simple integrator. Figure 1 illustrates this
behavior as �s becomes long: only when large, rare fluc-
tuations occur (z > zmin), the membrane potential can
reach the threshold and produce spikes. When such a
fluctuation occurs, it remains present for a time �s and,
if it is big enough, the neuron emits a burst of spikes,
leading to high output variability.

In the suprathreshold regime the expansion does exist.
Up to order O���1

s �, the output rate is

�out � ~��0 �
C1

�s
;

C1 � �2m~��
2
0

�
�m~��0��̂�

�1 � ĤH�1�2 �
�̂��2 � ĤH�2

2

�
;

(21)

where ~��0 � F 0�ĤH; �̂��. Equation (21) takes into account
all the corrections to the output rate at order ��1

s . In this
regime the neuron behaves as an integrator, because its
firing is mainly driven by the mean input current [see
Eq. (21)], and it is not very sensitive to synaptic fluctua-
tions. This coding mechanism clearly contrasts with that
employed by the neuron in the subthreshold regime.

(ii) One fast and one slow synaptic types.—In a sce-
nario where the effective membrane time constant �m
changes dynamically, it can take values of a few milli-
seconds, intermediate between the synaptic time con-
stants of one short and one long synaptic type. This is
the case found in a recent study [3] about the effect of
background activity on �m when excitatory AMPA (fast)
and inhibitory GABA (slow) [1] synaptic receptors are
present. In this case the total current has two contribu-
tions, I�t� � I1�t� � I2�t�, which in the diffusion limit are

�s _II1�t� � � I1�t� ��1 � �1��t�;

I2�t� ��2 � �2&�t�:
(22)

The quantities �1, �2, and �2
1, �

2
2 are the means and

variances of the inhibitory and excitatory currents, and
��t� and &�t� are two independent white noise processes
with unit variance. Defining � � �1 ��2 and perform-
ing the linear transformation I1 � �1 � z�1=

�������
2�s

p
and

V � ��m � x�2

�����������
�m=2

p
, the equation for z is still Eq. (6),

but now x obeys
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_xx �
1

�m
��x�

���������
2�m

p
&�t� �

����
'

p
� z� (23)

instead of Eq. (10). Again we write � in place of �.
Here ' � �2

1=�
2
2, and the threshold and reset potentials

now become �̂� �
���
2

p
�����m�=�2

������
�m

p
and ĤH ����

2
p

�H ���m�=�2
������
�m

p
. The current autocorrelation is

h�I�t� ����I�t0� ���i � �2
2��t� t0� �

�2
1

2�s
e��jt�t0j=�s�

(24)

and the stationary FPE reads�
Lx � �

����
'

p
z
@
@x

� �2Lz

�
P�x; z� � ��mJ�z���x� ĤH�:

(25)

The escape current can be obtained from here in a self-
consistent way (see [5,12]). The perturbative calculation
proceeds as in the case of a single filter (in particular � is
kept fixed until the end). Now condition (12) becomes
Pn��̂�; z� � 0 for all n. The output firing rate is

�out �
Z 1

�1

dz�������
2 

p e��z2=2�F �ĤH � �
����
'

p
z; �̂�� �

����
'

p
z�;

(26)

where we have defined the quantities F�1�a; b� �
�m

R
b
a dt R�t=

���
2

p
� and R�t� �

���������
 =2

p
et

2
�1� erf�t��, and

erf�t� is the error function. The quantity F in Eq. (26)
has also an intuitive meaning: it is the rate of a LIF neuron
driven by a current with effective mean �eff �
�� z�1=

�������
2�s

p
and variance �2

2 [10]. For vanishing �2,
Eq. (26) converges to the previous result, Eq. (20). The
output firing rate obtained by expanding Eq. (26) up to
O��2� is
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FIG. 2. Output firing rate as a function of �s in the sub- and
the suprathreshold regimes. Left: Subthreshold regime with
� � 80 s�1, and �2 � 12 s�1 (upper curve), �2 � 4 s�1 (bot-
tom curve). Full lines: predicted rate using the interpolation
procedure with �s;inter � 15 ms. Right: Suprathreshold regime
with � � 105 s�1, and �2 � 1 s�1. Full line: predicted rate
with �s;inter � 30 ms. Straight line: infinite �s limit. In all cases,
�m � 10 ms, � � 1, and H � 0 (in arbitrary units), the data
points are the corresponding simulation results and the dashed
lines are the long �s predictions, Eq. (20).
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�out � �0 �
C2

�s
;

C2 � '�2m�
2
0

�
�m�0�R��̂�=

���
2

p
� � R�ĤH=

���
2

p
��2

�
�̂�R��̂�=

���
2

p
� � ĤHR�ĤH=

���
2

p
�

2

�
:

(27)

In the presence of fast noise the neuron is an integrator in
both the supra- and the subthreshold regimes. Firing is
mainly due to the mean current � and the fast noise �2.
This is seen in that the leading term in Eq. (27), �0 �
F �ĤH; �̂��, is the rate of a standard integrator [10] receiv-
ing a current with these characteristics. That rare fluctua-
tions are not relevant can be seen from the fact that this
leading term comes from z � 0 in Eq. (26).

Interpolating between the short and long �s limits.—
For a single filter it is possible to obtain a good prediction
of the response of the neuron for any value of the ratio
�m=�s. The effect of a single filter with a short �s on the
rate for crossing an absorbing barrier was studied in [11],
where it was shown to be of order

�����
�s

p
. A similar tech-

nique was used to compute the response of a LIF neuron
[6,7] obtaining

�out � ~��0 � 1:46
�����������
�s�m

p
~��20

�
R
	
�̂����
2

p



�R

	
ĤH���
2

p


�
: (28)

We can now interpolate between the two limits, Eqs. (20)
and (28), by introducing additional dependencies of the
firing rate on �s, following a procedure introduced in
[5]. At short �s we use �out � ~��0 � A

�����
�s

p
� B�s �

C�3=2s , where A is the coefficient of the correction term
in Eq. (28), while at long �s we employ Eq. (20). Both
limits are joined at �s;inter � �m, and B and C are set to
obtain a continuous and derivable interpolating curve at
�s � �s;inter.

We have tested our results and the interpolation proce-
dure generating random walk samples from the stochastic
028102-4
equations (5) and (6). Figure 2 shows the neuron response
as a function of �s. Notice that while in the subthreshold
regime (left) the rate decreases monotonically as �s, in
the suprathreshold regime (right) it has a minimum. The
prediction is rather accurate and, remarkably, it is close to
the true rate even for �s � �m.

The interpolation can be also done for �m intermediate
between a fast and a slow filter. If' is small the procedure
is exactly the same employed in [5]. This is because the
current correlations induced by two synaptic types,
Eq. (24), can be interpreted as correlations in the presy-
naptic spike trains themselves [5] (' has to be reinter-
preted as the correlation amplitude). The output rate at
long �s given in Eq. (26) improves the results presented in
[5] because the present treatment does not impose any
restriction on the value of '.

We have found that a LIF neuron with only slow syn-
aptic filters acts as a detector of rare synaptic fluctuations,
Eq. (20). But how can these fluctuations be generated?
These are produced when there are coincidences in the
arrival times of a large number of spikes with a temporal
precision �s. When the inputs are synchronized, rare
fluctuations are generated in the same way, but coinci-
dences and thus large fluctuations are now more likely
(this can be considered in our formalism by renormaliz-
ing� in Eq. (20) (see [5]).While with only slow filtering a
neuron acts as a coincidence detector, the presence of a
fast filter (even with finite short �s < �m) prevents the
neuron from behaving in this way, and the response looks
similar to the first graph in Fig. 1. These results show that
the interplay between membrane and synaptic time con-
stants is crucial for determining the neuronal behavior
and give a quantitative description of the phenomenon.
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