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Entanglement versus Correlations in Spin Systems
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We consider pure quantum states of N � 1 spins or qubits and study the average entanglement that
can be localized between two separated spins by performing local measurements on the other
individual spins. We show that all classical correlation functions provide lower bounds to this local-
izable entanglement, which follows from the observation that classical correlations can always be
increased by doing appropriate local measurements on the other qubits. We analyze the localizable
entanglement in familiar spin systems and illustrate the results on the hand of the Ising spin model, in
which we observe characteristic features for a quantum phase transition such as a diverging entangle-
ment length.
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beyond 3 or 4, and thus it is not related to the correlations of standard spin Hamiltonians. Let us, however, first
The mathematical description of multiparticle quan-
tum systems plays an important role in several branches
of physics. The main difficulty stems from the fact that
the number of parameters needed to describe a quantum
state grows exponentially with the number of particles.
However, sometimes it is possible to capture the most
relevant physical properties by describing these systems
in terms of very few parameters. This is the case, for
example, in quantum statistics, where two-particle corre-
lations play a fundamental role. They allow us to under-
stand several complex physical phenomena, like phase
transitions. Furthermore, they give rise to concepts like
correlation length, which quantifies a very intuitive prop-
erty of these systems.

Multiparticle systems are also of central interest in the
field of quantum information and, in particular, the quan-
tification of the entanglement contained in quantum
states. The reason is that entanglement is the physical
resource to perform some of the most important quantum
information tasks, like quantum information transfer
(cf. teleportation) or quantum computation.

Given the common interest of quantum statistical
mechanics and quantum information in multiparticle
systems it is natural to try to describe the physical phe-
nomena, like quantum phase transitions, appearing in
(for example) spin systems from the point of view of
entanglement. The main restriction one encounters is the
fact that there exist very few measures of multiparticle
entanglement with a clear physical meaning. In any case,
since entanglement measures correlations (for pure
states), one would expect that reasonable entanglement
measures are intimately connected to the two-point cor-
relation functions widely used in the context of quantum
statistical mechanics. This is not the case, however, if one
studies the behavior of the entanglement of formation be-
tween two separate spins after tracing out the rest [1–6].
Although this approach exhibits a very pronounced (uni-
versal) behavior of this quantity at the transition point, it
rapidly vanishes as the distance between the spins goes
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possessed by the state. There is also no direct relation
with the entanglement studied by Vidal et al. [7], which is
focused on the scaling of entanglement of a block of spins
with the rest of the system.

In this Letter we introduce a new concept which we
call localizable entanglement (LE). On the one hand, this
quantity has a very well defined physical meaning which
treats entanglement as a truly physical resource. On the
other, it establishes a very close connection between en-
tanglement and correlation functions, as one would natu-
rally expect. The LE of two particles is the maximal
amount of entanglement that can be localized in these
two particles, on average, by doing local measurements
on the rest of the particles [8]. The LE naturally leads to
the definition of entanglement length, which measures the
typical length scale at which the LE decays. The LE has
an operational meaning which applies to situations in
which out of some multiparticle entangled state one
would like to concentrate as much entanglement as pos-
sible in two particular particles. This occurs, for example,
in the context of quantum repeaters [9] or in the context
of quantum transport with spin systems (spintronics [10]).
The determination of the LE is a formidable task since it
involves an optimization over all possible local measure-
ment strategies, and thus cannot be determined in general.
We have nevertheless managed to determine tight upper
and lower bounds. The first ones are given by the en-
tanglement of assistance [11,12], and are obtained by
allowing global instead of local measurements on the
rest of the spins (in [12], a restricted version of the LE
was studied, and its difference with the entanglement of
assistance was emphasized). The second and more inter-
esting one can be derived by proving that there always
exist local measurements which do not decrease the ex-
isting correlations between the two spins, something that
despite its generality, up to our knowledge has not been
considered in the context of quantum information.

The usefulness of these findings are illustrated on
the hand of the entanglement present in the ground states
2004 The American Physical Society 027901-1



P H Y S I C A L R E V I E W L E T T E R S week ending
16 JANUARY 2004VOLUME 92, NUMBER 2
consider a simple example involving the N-qubit
Greenberger-Horne-Zeilinger (GHZ) state:

jGHZi �
1���
2

p �j00 � � � 0i � j11 � � � 1i	:

In this case, the LE is maximal as it is possible to cre-
ate a Bell state between two arbitrary qubits by measur-
ing the other qubits in the j�i; j
i basis [here j�i �
�j0i � j1i	=

���
2

p
]. The existence of these quantum correla-

tions could also have been revealed by studying the
classical two-point correlation functions

Qij
�	�j ih j	 � h j�i�  �j	j i 
 h j�i�j ih j�

j
	j i;

where i; j denote the positions of the spins under interest
and �;	 label the Pauli matrices. The correlation in the
� � 	 � z direction is the maximal possible one. It will,
indeed, be shown that correlation functions yield lower
bounds to the LE. However, in general, the presence or
absence of classical correlations gives only a coarse-
grained picture of the entanglement that ought to be
created between two distant spins. It is easy to find
examples of highly entangled quantum states exhibiting
no classical correlations whatsoever between any pair of
spins. As an example, consider the so-called cluster states
[13], obtained by the unitary evolution of an initially
separable state under the action of the Ising Hamiltonian:

j i �
1

2N=2
Ni�1 �j0ii�

�i�1	
z � j1ii	:

When N � 5, all reduced 2-qubit density operators are
proportional to the identity, and hence no correlations
exist between any two spins. However, suitable local
measurements on any N 
 2 qubits can always create a
Bell state between the two remaining ones [13], hence
indicating maximal LE.

Let us next give a formal definition of the LE. Consider
a pure state j i of N spins. Then the localizable entangle-
ment Eij� 	 is variationally defined as the maximal
amount of entanglement that can be created (i.e., local-
ized), on average, between the spins i and j by performing
local measurements on the other spins. More specifically,
every measurement basis specifies a pure state ensemble
E � fps; j�sig consisting of at least 2�N
2	 elements
counted by the index s. In this notation ps denotes the
probability to obtain the two-spin state j�si after per-
forming the measurement jsi on the assisting spins of our
N partite spin system. The LE is then given by

Eij � max
E

X
s

psE�j�si	;

where E�j�si	 denotes the entanglement of j�si. As we
deal with pure states of two qubits, all entanglement
measures are essentially equivalent, and in order to
make the connection with correlation functions, we mea-
sure the entanglement on the hand of the concurrence
[14]: indeed, it can readily be checked that the maximal
correlation [15] for a pure state of two qubits coincides
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with the concurrence, given by C�j i � aj00i � bj01i �
cj10i � dj11i	 � 2jad
 bcj. Note that the behavior of
the LE as defined in terms of the entropy of entanglement
is very similar [17].

Because of the variational definition, the LE is very
difficult to calculate in general. Moreover, in typically
large spin systems one does not have an explicit parame-
trization of the state under interest, but just information
about the classical one- and two-particle correlation
functions (which parametrize completely the 2-qubit re-
duced density operator). It is therefore interesting to
derive tight upper and lower bounds to the LE solely
based on this information. The upper bound can readily
be obtained using the concept of entanglement of assis-
tance [11]. It was shown in [12] that the entanglement of
assistance can be calculated as follows: given the reduced
density operator �ij and a square root X, �ij � XXy, then
the entanglement of assistance Eij� 	 as measured by the
concurrence is equal to the trace norm TrjXT��y  �y	Xj.

The lower bound is more subtle, and is shown to follow
from the following interesting theorem: given a (pure or
mixed) state of N qubits with classical correlation Qij

�	
between the spins i and j and directions �;	, then there
always exist directions in which one can measure the
other spins such that this correlation does not decrease,
on average. This automatically implies that there always
exist local measurements that increase (or keep) the clas-
sical correlations. Surprisingly, this very general theorem
seems not to have been noticed before, and is interesting
on its own. It could be very useful in the context of
cryptography (e.g., multipartite distribution of common
randomness [18]).

Let us next proof this theorem. Note that it is sufficient
to consider mixed states of three qubits. Let us parame-
trize a mixed 3-qubit density operator by four 4� 4
blocks

� �

�
�1 �

�y �2

�
:

Without loss of generality, let us consider the Q12
zz corre-

lations. The original correlations are completely deter-
mined by the diagonal elements of the density operator
�1 � �2. A von Neumann measurement in the j�i :�
cos���=2	j0i � sin���=2	 exp�i�	j1i basis (�� � � and
�
 � �� �) on the third qubit results in the Hermitian
unnormalized 2-qubit operators

X� �
�1 � �2

2
� cos��	

�1 
 �2

2

� sin��	
�
cos��	

�� �y

2
� sin��	

i��
 �y	

2

�
:

Defining p� � Tr�X�	, we have to prove that there al-
ways exist parameters �;� such that the correlation, on
average, does not decrease:

p�jQzz�X�=p�	j � p
jQzz�X
=p
	j � jQzz�X� � X
	j:
027901-2
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FIG. 1. Localizable entanglement Eij and correlation func-
tion Qij

xx (solid) and upper bound (dashed) as a function of the
coupling parameter $ for the infinite Ising chain with spin
distance n � 1 (left) and n � 10 (right). Observe the big gap
that can occur between the upper bound (allowing global
measurements) and the LE (local measurements) for large
spin distance.
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Without loss of generality we can assume that � �
Qzz�X� � X
	 is positive. Removing the absolute value
signs and parametrizing

�xx :� �cos��	; sin��	 cos��	; sin��	 sin��	�;

some straightforward algebra yields the sufficient
inequality

�xx T
"
�

 
�cc


�		
�

! 
�cc


�		
�

!
T

�Q

�		 �		T

�

#
x � 0; (1)

where �cc is such that p� � �1� �ccT �xx	=2, and �		;Q are
defined as 3� 1 and 3� 3 blocks of the matrix

S � RT��y  �y	R �

"
� �		T

�		 Q

#
:

Here R is the real 4� 4 matrix whose columns consist
of the diagonal elements of the matrices ��1 � �2	,
��1 
 �2	, ��� �y	, i��
 �y	.

Because of Sylvester’s law of inertia [19], we know that
S has two positive and two negative eigenvalues. Now
Q
 �		 �		T=� is the inverse of the Schur complement of �,
and hence corresponds to a principal 3� 3 block of the
matrix S
1. Because of the interlacing properties of ei-
genvalues of principal blocks [19], it follows that it has
either two positive and one negative eigenvalue or two
negative and one positive one. And this of course ensures
that there always exists an �xx such that the inequality (1) is
fulfilled, completing the proof. �

Note that the proof is constructive and allows one to
determine a measurement strategy that would at least
achieve the bound reported. The previous theorem can
also readily be generalized to spin m > 1=2 systems
by looking at them as being built up by dlog2�2m� 1	e
qubits [16].

Let us now show how this theorem yields a lower bound
to the LE. Given an initial pure state ofN qubits, we know
that the measurement of the first, second, . . . ; N 
 2th
qubit can be chosen such that on average the final corre-
lations do not decrease. But we end up with a pure state of
two qubits, for which the concurrence is equal to the
maximal correlation. A lower bound to the LE is therefore
given by the maximal correlation function, and following
the previous theorem, there is always a constructive way
of determining a measurement strategy that achieves this
lower bound. Surprisingly, we see that this lower bound
seems to be the exact value for the LE in the case of many
systems of interest.

The previous findings can readily be applied to the
study of entanglement in translational invariant ground
and excited states of spins arranged in a regular lattice. In
quantum statistics and more specifically in the study of
quantum phase transitions, the correlation length is the
canonical parameter of interest. The concept of LE read-
ily lends itself to define the related entanglement length
!E as the typical length scale at which it is possible to
create Bell states by doing local measurements on the
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other spins. More specifically, the entanglement length is
finite if and only if the LE Ei;i�n ’ exp�
n=!E	 decays
exponentially in n, and the entanglement length !E is
defined as the constant in the exponent in the limit of
an infinite system (see also Aharonov [20]):

!
1
E � lim

n!1

�

 lnEi;i�n

n

�
:

Note that a diverging correlation length automatically
implies a diverging entanglement length and hence
long-range quantum correlations, although the converse
is not necessarily true [21].

More specifically, we have studied ground states of spin
1=2 Hamiltonians of the form

H � 

X
i;j

X
�;	�x;y;z

#ij�	�
i
��

j
	 


X
i

#i�z

with parity symmetry Ni�1�
i
z (i.e., #ijz;	�z � 0).

Extensive numerical calculations on systems of up to 20
qubits showed that our lower bound is always close to the
LE, and typically is even equal to the exact value of the
LE [16]: this is surprising and highlights the power of
the given lower bound. Note also that whenever the parity
symmetry is present, the upper and lower bounds can
easily be calculated:

max�jQij
xxj; jQ

ij
yyj; jQ

ij
zzj	 � Eij �

������
sij�

q
�

������
sij


p
2

;

sij� � �1� h�iz�
j
zi	2 
 �h�izi � h�jzi	2:

As an illustration, we consider the ground state of the
Ising Hamiltonian (#ij�	�$%�;x%	;x%j;i�1;#

i�1), which
has been solved exactly [22] and exhibits a quantum phase
transition at $ � 1. In this case, the maximal classical
correlation is always given by Qxx, and this bound can be
achieved by measuring the assisting spins in the �z basis.
Numerics indicated that this lower bound is equal to the
LE (see also [16]). For $ < 1, the LE is small as the
027901-3
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FIG. 2. Correlation function Qi;i�4
xx (solid), localizable en-

tanglement Ei;i�4 (diamonds), and its upper bound (dashed) as
a function of the coupling parameter $ for the ground state of
the finite Ising chain (N � 14) in the case of broken parity
symmetry by a small perturbating magnetic field in the x
direction.
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ground state is almost separable, and the entanglement
length is finite (see Fig. 1) as the LE decreases exponen-
tially with the spin distance. At the quantum critical point
$ � 1, the behavior of the LE changes drastically, as it
decreases polynomially Ei;i�n � n
1=4, thus leading to a
diverging entanglement length !E. In the case $ > 1 we
also get !E � 1, as the LE saturates to a finite value given
by M2

x � 1=4�1
 $
2	1=4. Indeed, the ground state is
then close to the GHZ state. This behavior is illustrated
in Fig. 1.

In a more realistic setup, however, the parity symmetry
of the Ising Hamiltonian is broken by a perturbation and
the ground state for large coupling is also separable.
Indeed, the energy gap between the lowest energy states
with different parity scales like 1=N2 for N � 1 qubits in
the region $ > 1 [23], and henceforth the ground state
becomes a superposition of these two states. The calcu-
lation of its LE and the corresponding lower and upper
bounds are depicted in Fig. 2.

These results give a clear illustration of the intimate
connection between classical correlations and entangle-
ment in the case of ground states of translational invari-
ant Hamiltonians. The plethora of results concerning
classical correlation functions, such as diverging corre-
lation lengths at quantum phase transitions, can now
be interpreted from the perspective of quantum informa-
tion theory; one could argue that the status of classical
correlations has been lifted to one of (useful) quantum
correlations.

In conclusion, we have introduced the notion of local-
izable entanglement. It has a nice operational meaning as
it quantifies the amount of useful entanglement that can
be created between two spins by doing local measure-
ments on all other spins. We proved that classical corre-
lation functions always provide lower bounds to the LE,
showing that the presence of classical correlations is
sufficient to be able to create Bell-like quantum correla-
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tions. As a side product, we proved that classical corre-
lations in multipartite mixed quantum states can always
increase by doing appropriate measurements on the other
qubits. Finally, we demonstrated the usefulness of these
concepts in the context of spin systems on a lattice,
provided a natural definition of entanglement length,
and showed that it diverges at a quantum phase transition.
Further generalizations and applications will be pre-
sented elsewhere [16].
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