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It is shown that the Goldstone modes associated with a broken continuous symmetry lead to
anomalously large fluctuations of the zero field order parameter at any temperature below Tc. In
dimensions 2< d < 4, the variance of the extensive spontaneous magnetization scales as L4 with the
system size L, independent of the order parameter dynamics. The anomalous scaling is a consequence
of the 1=q4�d divergence of the longitudinal susceptibility. For ground states in two dimensions with
Goldstone modes vanishing linearly with momentum, the dynamical susceptibility contains a singular
contribution �q2 �!2=c2��1=2. The dynamic structure factor thus exhibits a critical continuum above
the undamped spin wave pole, which may be detected by neutron scattering in the Néel phase of 2D
quantum antiferromagnets.
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tially a consequence of the long wavelength phase fluctu-
ations [3]. In the present Letter, we will show that the

sion [5]. The dynamic structure factor of 2D quantum
antiferromagnets thus exhibits a critical continuum above
It is one of the basic properties of any thermodynamic
system that the fluctuations Var ÂA � hÂA2i � hÂAi2 � V of
an extensive variable ÂA scale linearly with the system
volume V. This property guarantees that the intensive
variables ÂA=V are self-averaging, with rms fluctuations
vanishing proportional to V�1=2. Physically, the extensive
nature of Var ÂA� V is due to the existence of a finite,
microscopic correlation length �. A large system can thus
be partitioned into an extensive number of V=�d sub-
volumes which are statistically independent. Since the
variance in each subvolume is finite, the central limit
theorem then quite generally implies a Gaussian distribu-
tion for ÂA with a variance of order V, in agreement with
the standard Einstein theory of fluctuations in macro-
scopic thermodynamics.

The above argument indicates that the linear scaling
Var ÂA� V may break down only at a critical point of a
continuous phase transition where the correlation length
� diverges. In fact, from the standard relation Var M̂M �
V � T  between the fluctuations of the total ‘‘magnetiza-
tion’’ M̂M and the corresponding linear susceptibility, the
finite size scaling �Tc; L� � L2�� of the susceptibility
right at Tc [1] implies a nontrivial dependence Var M̂M�
Ld	2�� on system size L at the critical point. Below, it
will be shown that anomalous fluctuations of the order
parameter are present not only at Tc but in fact at any
temperature below Tc provided the broken symmetry is
continuous. This is a result of the presence of Goldstone
modes, which imply that correlations decay algebraically
below Tc with exponents that are independent of tem-
perature. A specific example of recent interest are fluctua-
tions of the condensate number N̂N0 in a Bose-Einstein
condensate. Using a weak coupling Bogoliubov approach,
Giorgini et al. have shown [2] that Var N̂N0 � T2L4 scale
anomalously at low temperatures. In fact, this result also
applies to strongly interacting superfluids, being essen-
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anomalous fluctuations in a Bose-Einstein condensate are
just one particular example of a rather general phenome-
non which appears in any phase with a broken continuous
symmetry. Consider, for example, an isotropic ferromag-
net in zero field below Tc. Because of the invariance under
spin rotations, it costs no energy to rotate the direction of
the magnetization vector. Provided that the microscopic
interactions are short ranged, this implies that the trans-
verse susceptibility ?�q� diverges precisely as 1=q2 at
small wave vectors q! 0. As a result, there are strong
fluctuations of the direction of the magnetization, lead-
ing to a complete destruction of long range order at
finite temperature in dimensions d � 2, the well-known
Mermin-Wagner-Hohenberg theorem. Regarding the
magnitude of the magnetization, the naive expectation
is that its fluctuations are just like that of a standard
thermodynamic variable because there is a finite restoring
force for deviations from the equilibrium value. However,
as was noted a long time ago by Patashinski and
Pokrovski [4], the inevitable coupling between longitu-
dinal and transverse order parameter fluctuations entails
that the longitudinal susceptibility is also singular at
small wave vectors, diverging as k�q� � 1=q4�d in di-
mensions 2< d< 4. Our aim in the following is to show
that (i) the 1=q4�d divergence of the longitudinal suscep-
tibility leads to anomalous fluctuations Var M̂Ms � L4 of
the zero field order parameter in 2< d< 4 and T � 0 for
an arbitrary broken continuous symmetry phase. For
superfluids, the corresponding relative condensate fluc-
tuations are universal at low T. (ii) There is an analog of
the singular nature of k for zero temperature phases with
a broken continuous symmetry. In two dimensions and
with Goldstone modes whose frequencies ! � cq vanish
linearly with momentum q � j ~qqj, the dynamical suscep-
tibility has a singular contribution �q2 �!2=c2��1=2

as noted first by Sachdev on the basis of a 1=N expan-
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the standard �-function spin wave peak. This effect
may be observed in high resolution neutron scattering
experiments.

As an effective description of an arbitrary phase with a
broken continuous symmetry at finite temperature, we use
the nonlinear � model [6]. It describes directional fluc-
tuations of an order parameter ~  �x� � m�0�

s
~		�x� with a

fixed magnitude m�0�
s in terms of an N-component unit

vector ~		�x�. At zero external field, the effective action for
the fluctuations of ~		 is

S�	� �
�s
2T

Z
ddx�r ~		�x��2 j ~		�x�j2 � 1; (1)

with the spin stiffness (or helicity modulus) �s as the
single phenomenological parameter. In a finite system of
volume V � Ld, there is of course no spontaneous mag-
netization at zero field. The breaking of a continuous
symmetry below Tc, however, shows up in the integrated
O�N�-symmetric correlation function at finite volume

Z
V
ddx h ~  �x� � ~  �0�iL � Vm2

L ! Vm2
s ; (2)

defining an intensive nonzero order parameter m2
L

which approaches the spontaneous magnetization m2
s

of the infinite system in the thermodynamic limit
L! 1. For superfluids, this is just the number of par-
ticles in the condensate. In dimensions d > 2, where
ms is nonzero at finite T, the leading long distance be-
havior of the two point functionG�r� � h ~  �x� � ~  �0�i may
be obtained from a simple Gaussian spin wave calcula-
tion. Following a standard procedure [6], the unit vector

~		�x� � � ~

�x�;
����������������������
1� ~

�x�2

q
� is decomposed into N � 1

‘‘transverse’’ Goldstone fields 
a�x� , a � 1; . . .N � 1

and a longitudinal component 	N�x� �
����������������������
1� ~

�x�2

q
. At

low enough temperatures, where spin wave interactions
can be neglected, the 
 fields are Gaussian random
variables with variance h
a�q�
b�q

0�i � �a;b�q;�q0T=
�sq2. The zero field correlation function below Tc,

G�r� � m2
s�1	 Ck�r� 	 �N � 1� � C?�r��; (3)

is thus split into longitudinal and transverse parts, with
m2
s � G�1� the renormalized value of the spontaneous

magnetization. To lowest nontrivial order in the small
fluctuations 
, the transverse correlation function decays
proportional to T=�srd�2, as expected from the standard
1=q2 divergence of the transverse susceptibility

?�q� � m2
sC?�q�=T �

m2
s

�sq
2 (4)

in the symmetry broken phase. In leading order,
the longitudinal function is given by (c stands for
‘‘connected’’)

Ck�r� �
1

4
h ~

2

�x� ~

2
�0�ic �

N � 1

2
C2
?�r�; (5)
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and thus again decays algebraically as 1=r2�d�2�. Contrary
to the naive mean field picture, where the longitudinal
susceptibility k�q� below Tc is finite as q! 0, the slow
decay of Ck�r� implies that k�q! 0� � T=�2

sq4�d is
divergent in d < 4 [4]. While the relation (5) is valid
only to leading order in an expansion in powers of 
,
the behavior Ck�r� � r�2�d�2� is in fact expected to be
exact at arbitrary temperatures below Tc [6], consistent
with a rigorous correlation inequality for N � 2 [7].

To discuss the fluctuations of the spontaneous magne-
tization in a finite system at zero field, we define a
fluctuating, extensive variable �d1 � ddx1�

M̂M s �
1

V

Z
d1

Z
d2 ~  �1� � ~  �2�; (6)

with thermal average hM̂Msi � Vm2
L. Its fluctuations are

then determined by the connected four point function

u4�1234� � h ~  �1� � ~  �2� ~  �3� � ~  �4�ic: (7)

Expanding this consistently up to order 
4, one finds that
in an infinite system this function may be expressed
simply as

u4�1234� � m4
s
N � 1

2
� �C?�r13� � C?�r14�

� C?�r23� 	 C?�r24��
2: (8)

In order to obtain the scaling of Var M̂Ms in a finite system,
we switch to a momentum representation and replace
integrals

R
q by discrete sums V�1

P
q
0 over wave vectors.

The q � 0 contribution is excluded since it describes
an irrelevant global rotation of the order parameter
~  �x�. It is then straightforward to show that

Var M̂Ms � 2m4
s�N � 1�

�
T
�s

�
2
�
X
q

0 1

q4
; (9)

which is proportional to L4 in 2< d< 4 by simple di-
mensional analysis [8]. Defining a numerical coefficient B
by

P
q
0 q�4 � BL4=8$2, we find that B � 8E3�2�=$

2 �
0:501 for a 3D box with Dirichlet boundary conditions.
Here Ed�t� �

P
1
n1�1;...;nd�1�n

2
1 	 � � � 	 n2d�

�t is the gener-
alized Epstein zeta function, convergent for d < 2t (for
periodic boundary conditions B � 0:8375 [3]).

Although our derivation of the general result (9) is
based on an expansion in powers of 
 and thus appears
to be restricted to low temperature, the exponent in
Var M̂Ms � L4 is universal below Tc [9] just like the
q��4�d� divergence of the longitudinal susceptibility.
Similarly, the temperature dependence of Var M̂Ms will
be �T=�s�T��

2 for arbitrary temperatures below Tc, van-
ishing proportional to T2 at low temperatures since
�s�T � 0� is finite. This follows from the fact that, at
any temperature T in the broken symmetry phase, the
dominant finite size dependence is determined by the
leading low energy constant in the effective field theory
for fluctuations of the order parameter, which is precisely
027203-2
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�s as defined in Eq. (1). New effective constants enter
only in higher order terms, as discussed, for instance, in
the context of chiral perturbation theory in QCD [10].
From Eq. (9), it follows that the relative fluctuations
Var M̂Ms=hM̂Msi

2 scale as L�2�d�2�. The spontaneous magne-
tization is therefore self-averaging in d > 2 although
weaker than expected naively, unless d > 4. In this con-
text, it should be mentioned that, in the case of a non-
Abelian symmetry N � 3, the spin stiffness �s has
anomalous fluctuations

Var�s
h�si2

� �N � 2� �

�
T

�sL�d�2�

�
2

(10)

on its own, as shown by Chakravarty [11]. They are very
similar to the fluctuations of the spontaneous magnetiza-
tion discussed here and indeed arise from the same kind
of Goldstone anomalies. A special situation appears in
homogeneous superfluids �N � 2� at low temperatures.
Since translation invariance requires the superfluid den-
sity to be equal to the full density n, the associated
stiffness �s�T ! 0� � �h2n=m is independent of the inter-
action. Equation (9) then leads to the remarkable result
that the relative fluctuations of the condensate number at
low temperature �d � 3�

lim
T!0

Var N̂N0

hN̂N0i
2
�

B

�n)2
TL�

2 (11)

are completely universal, depending only on density,
system size, and the thermal wavelength )T �
h=

��������������
2$mT

p
, but not on whether the superfluid is weakly

or strongly interacting [12]. Finally, it is important to
realize that —as in the case of the Mermin-Wagner-
Hohenberg theorem—the result (9) is independent of
the order parameter dynamics. It applies equally to say
ferromagnets or antiferromagnets even though the tem-
perature dependence of the average order parameter hM̂Msi
is, of course, very different in both cases. This may be
shown either by a microscopic derivation of Eq. (9) on the
basis of noninteracting spin wave theory around a per-
fectly ordered ground state or, alternatively, by using a
quantum mechanical generalization of the nonlinear �
model which describes magnons with dispersion either
!� q2 or !� q.

As shown above, the anomalous fluctuations (9) of the
order parameter are a consequence of the q��4�d� diver-
gence of the longitudinal susceptibility in d < 4. In the
following, we want to discuss the analog of this phenome-
non in zero temperature phases where a continuous sym-
metry is broken. In this case, the specific dynamics of the
order parameter is important. Here, we assume that the
Goldstone modes have a linear spectrum ! � cq as in
superfluids and antiferromagnets. An effective descrip-
tion of the ordered phase can then be obtained from a
quantum mechanical nonlinear � model, with a unit vec-
tor ~		�x; *� which depends both on space x and imaginary
time * 2 �0; + �h�. The corresponding effective action
027203-3
S�	� �
�s
2 �h

Z + �h

0
d*

Z
ddx

	
�r ~		�x��2 	

�
1

c
@* ~		

�
2



(12)

has the spin wave velocity c as the only additional pa-
rameter. Together with the renormalized value m2

s of
the long range order, �s and c completely determine the
low energy properties of the ordered phase. As an ex-
ample, this model applies both to the Néel ordered state
of 2D quantum antiferromagnets discussed extensively
in the context of high temperature superconductors [13]
or to the superfluid phase of cold atoms in an optical
lattice which has been realized recently in 3D [14].
Using again a lowest order expansion in powers of the
small fluctuations ~

�x; *� in the standard decomposition
~		 � � ~

;

����������������
1� ~

2

p
�, the transverse correlation function at

T � 0 in two dimensions is given by [15]

C?�x; *� �
�hc

4$�s

1����������������������
r2 	 �c*�2

p : (13)

Analytic continuation to real time t � �i* and Fourier
transformation give the standard form of the transverse
dynamical susceptibility in any dimension,

?�q;!� �
m2
s

�s

1

q2 �!2=c2
: (14)

It leads to the expected quasiparticle pole at ! � cq,
reflecting the presence of undamped antiferromagnetic
spin waves. Considering the longitudinal correlations, the
analog of the relation (5) again applies to leading order.
As a result, the longitudinal dynamical susceptibility in
2D turns out to be

k�q;!� �
�N � 1�m2

s �hc

16�2
s

1�������������������������
q2 �!2=c2

p ; (15)

which has a branch cut rather than a simple pole.
Formally the result (15) is completely analogous to the
1=q divergence of the classical static susceptibility k�q�
in d � 3 discussed above. Indeed the effective dimension-
ality of the 2D quantum antiferromagnet is d	 z � 3
and the dependence on frequency ! is dictated by the
formal Lorentz invariance of the model �12�.

In order to relate these results to directly observable
quantities, we consider the rotationally averaged stag-
gered susceptibility (for antiferromagnets N � 3)

s�q;!� �
N � 1

N
?�q;!� 	

1

N
k�q;!�: (16)

For frequencies �h!� T, its imaginary part is equal to
the dynamic structure factor S�q;!� at ! > 0 up to a
factor 2 �h, giving

S�q;!� � 2m2
s�J

N � 1

N

	
$
2q
��!� cq�

	
�J
16

0�!� cq�����������������������
!2 � c2q2

p


: (17)
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The longitudinal fluctuations of the Néel order thus lead
to a critical continuum above the spin wave pole at ! �
cq, which decays only algebraically. The continuum re-
sults from the decay of a normally massive amplitude
mode with momentum ~pp into a pair of spin waves with
momenta ~qq and ~pp� ~qq, which is possible for any ! > cq,
with a singular cross section because of the large phase
space. The amplitude mode is thus completely over-
damped in two dimensions [5]. The relative weight of
these fluctuations compared to the dominant transverse
contribution is determined by the dimensionless pa-
rameter q�J, with �J � �hc=�s the Josephson correlation
length. This length controls the crossover from the
Goldstone regime q�J � 1, where the spin dynamics is
well described by small fluctuations around a Néel or-
dered ground state to quantum critical fluctuations at
q�J � 1. The quantum critical regime has a dynamical
susceptibility of the form [16]

s�q;!� �
m2
s

�s

�
N�J
2$

�
�
�

AQ
�q2 �!2=c2�1��=2

; (18)

with an amplitude AQ close to 1 and an exponent � which
is nearly zero. Now, in the regime where the ground state
exhibits strong Néel order, the Josephson correlation
length is only several lattice constants [13], and thus the
quantum critical regime is hardly accessible. In turn,
there is a rather wide Goldstone regime characterized
by q�J � 1 and q��T� � 1, where ��T� is the finite 2D
correlation length over which Néel order is lost at finite
temperature. Because of the exponential dependence [13]

��T� � �J exp�2$�s=T�; (19)

the relevant range of wave vectors ��1�T�< q< ��1
J is

rather wide at low temperatures. Experimentally, spin
waves in 2D quantum antiferromagnets have been ob-
served by inelastic neutron scattering in the vicinity of
the Néel ordering wave vector �$;$�. In a constant !
scan, the first term in (17) gives rise to a sharp peak at
q � !=c with an amplitude �1=q [17]. The second
contribution in (17) due to the longitudinal fluctuations
implies an additional algebraic tail towards smaller
wave vectors, provided q is in the Goldstone regime. At
room temperature, where ��T� is several hundred �A and
with typical values of �J, this gives a range 0:005<
q� �A�1�< 0:05. Given the resolution in Ref. [17], de-
tection of this algebraic tail appears very difficult;
however, high resolution measurements may be able to
observe the additional contribution from the longitudi-
nal spin fluctuations, which apparently behave similar to
the critical fluctuations (18), however, with a rather large
exponent � � 1.

In summary, it has been shown that Goldstone modes
associated with a broken continuous symmetry lead to
fluctuations of the zero field order parameter which scale
proportional to L4 at any temperature below Tc. For 2D
027203-4
ordered ground states like the Néel phase of high tem-
perature superconductors, the underlying longitudinal
fluctuations lead to an additional critical continuum be-
yond the simple spin wave pole in the dynamic structure
factor, whose detection requires high resolution neutron
scattering experiments.
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