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Hydrodynamic Effects in Interacting Fermi Electron Jets
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We theoretically study hydrodynamic phenomena originating from electron-electron collisions in a
two-dimensional Fermi system. We demonstrate that an electron beam sweeping past an aperture
creates a pumping effect, attracting carriers from this aperture. This pumping effect originates from the
specific electric potential distribution induced by the injected electrons. In the regions near the main
stream of injected electrons, a positive potential is induced by the injected electrons. Thus, the normally
repulsive Coulomb interaction leads to an attractive force in the Fermi system. This quantum pumping
mechanism in a Fermi system differs qualitatively from the Bernoulli pumping effect in classical
liquids. We also discuss possible experimental realizations.
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FIG. 1 (color online). (a) Momentum relaxation and electron-
electron mean free paths, lp and lee, as a function of tempera-
ture. The parameter lp is obtained from mobility measurements
on a GaAs=AlGaAs heterostructure at the 2DES density 4:8�
1011 cm	2 [12]. lee is calculated using Eq. (14) from Ref. [10].
(b) Geometry of the system with an injected electron beam.
that the injected beam creates an unusual potential pat-
tern which can result in a hydrodynamic pumping effect.

(c) Schematic of two symmetric jets in a two-dimensional
plasma.
Electron-electron (e-e) scattering in a degenerate elec-
tron gas forms one of the central concepts of Fermi-liquid
theory [1,2]. Electron states with energy slightly above
the Fermi surface are not stationary, since they decay
accompanied by the creation of electron-hole pairs in
the Fermi sea [1]. The total momentum in the e-e scatter-
ing process is conserved, and hence the e-e collisions do
not in the main affect the conductivity. At the same time,
the e-e collisions play an important role in experiments
which involve the phase coherence time of the electron
[3,4], and in physical effects implicating hydrodynamics
[5–8]. At low temperatures, the e-e collision processes
slow down due to Fermi statistics [9–11], leading, in the
ideal two-dimensional electron system (2DES), to the
inverse e-e lifetime rapidly decreasing upon lowering
the temperature T [9,10]:
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where h, EF, and vF are the Planck’s constant, the Fermi
energy, and the Fermi velocity, respectively; a�0 denotes
the effective Bohr radius. To render hydrodynamic effects
in 2DESs observable, e-e collisions should occur more
often than impurity scattering events. Mathematically,
this condition is obvious: lee < lp, where lee � vF�ee
is the electron mean free path related to e-e scattering
and lp is the momentum relaxation mean free path. The
above condition is satisfied in typical high-mobility
GaAs=GaAlAs heterostructures, in the temperature
range T � 5–35 K [Fig. 1(a)] [13]. Therefore, the hydro-
dynamic effects should be accessible in experimental
low-temperature studies. Here we describe a new hydro-
dynamic phenomenon in a low-temperature electron
plasma which occurs when an electron beam is injected
from a narrow aperture into a 2DES [Fig. 1(b)]. We show
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This pumping effect exists in mesoscopic structures
where the injected electrons experience just a few e-e
collisions. In contrast to the Bernoulli effect in classical
liquids, the predicted quantum pumping behaves linearly
in the excitation and can be observed only in a Fermi
system at low temperatures.

Another potential application of the predicted hydro-
dynamic effect concerns measurements of the electron
phase coherence time, ��. The low-temperature behavior
of �� in nanostructures is a long-standing problem.
According to the standard theory, e-e scattering becomes
very weak at low temperatures and therefore �� should
tend to infinity at zero temperature. However, the experi-
ments demonstrate that �� saturates to a finite value at
low temperatures [3,4]. Magnetic-impurity scattering has
been implicated among others [4]. Yet, e-e scattering
itself is a nontrivial problem in mesoscopic structures,
where an electron experiences scattering by boundaries as
well as impurities. For example, it is accepted that in
diffusive metals, the formula 1=�ee / T2 should be
strongly modified due to disorder [11]. Measurements of
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the hydrodynamic effect predicted in this work can di-
rectly reveal the contribution of e-e scattering to the
phase coherence time in mesoscopic ballistic structures
at low temperatures.

To describe hydrodynamic effects in a stationary elec-
tron beam [Fig. 1(b)] we employ the linearized
Boltzmann equation:
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where f1�r;p� is the distribution function of the non-
equilibrium electrons, r � �x; y� and p are the two-
dimensional coordinate and momentum, respectively
[Fig. 1(b)]; f0��� is the equilibrium Fermi function,
v � p=m is the electron velocity, and � and m are the
energy and the effective mass of the electron, respec-
tively; E is the in-plane electric field, e � 	jej is the
electron charge, and J is the collision integral. At low
temperature, the nonequilibrium electrons have energies
close to the Fermi surface and the function f1 can be
written as f1�r; �; �� � 	�@f0=@��F�r; ��, where � is the
angle between the velocity and the direction �x.

We treat e-e collisions in the relaxation-time approxi-
mation. Because of the complexity of the collision inte-
gral incorporating the long-range Coulomb interaction,
theoretical studies based on the long-range Coulomb col-
lision integral usually include only the first e-e collision
event [5,14]. In contrast, the relaxation-time approach
allows us to obtain analytical results for an infinite num-
ber of collisions and to describe fundamental hydrody-
namic effects appearing in the multicollision regime.
Within the relaxation-time approximation, the collision
integral describing scattering events in the vicinity of the
Fermi surface, takes the form:

J�F� � 	
F	 F	 2 cos�cos�F	 2 sin�sin�F

�ee
; (3)

where �FF �
R
2�
0 F���d�=2� and �ee is the e-e scattering

time. Note that the e-e collision integral (3) conserves
both the number of particles and the momentum. In
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addition, the collision integral (3) assumes an ideal sys-
tem without disorder and is valid if lee < lp.

To solve the Boltzmann equation in the half plane
x > 0 we need to impose the boundary condition (BC)
at the line x � 0. Outside the aperture, the BC describes
the elastic collision of an electron with an ideal border,
F�0; y; �� 	 F�0; y;�	 �� � 0. In order to express the
injection process, we now introduce the injection function
g�y; ��, nonzero only in the angle intervals 0< �< �=2
and �3=2��< � < 2�. It is convenient to consider the BC
separately in two intervals, 	�=2< �< �=2 and �=2<
�< �3=2��. In the first angular interval, the outgoing flux
of electrons vFF��� should equal the sum of the incoming
and the injected fluxes, vFF��	 �� � vFg���. A similar
argument is applied to the second interval. In both inter-
vals, the BC condenses to a single formula:

F�0; y; �� 	 F�0; y;�	 �� � g�y; �� 	 g�y;�	 ��: (4)

Importantly, the BC (4) leaves some freedom in choosing
the function F�0; y; ��. A general solution of Eq. (4) can
be written as F�0; y; �� � w1�y; �� � w2�y; ��, where the
function w1��� is determined by the injection g�y; ��,
whereas the function w2��� is arbitrary and satisfies the
elastic-collision condition w2�y; �� 	 w2�y;�	 �� � 0.

The BCs in this problem are given by Eq. (4) at the line
x � 0 and by the condition F�x! 1� ! 0 at infinity. To
solve this problem in a rather convenient way, we now
consider a symmetric problem, involving the entire two-
dimensional plane and two symmetric current sources
(two jets) in the vicinity of r � 0. Including the two
current sources, we write the linearized Boltzmann equa-
tion as follows:

v �
@F
@r

	 eE 
 v � J�F� �G�y; �� �x�

�G�y;�	 �� �x�; (5)

where the function G�y; �� describes the injection. By
exploiting the symmetry of the problem and integrating
Eq. (5) over x in the vicinity of x � 0, we determine that
the solution of Eq. (5) satisfies the necessary BC (4) with
G��� � vF cos�g���. Equation (5) can be solved using
Fourier transformation,
iv 
 kFk 	 eEk 
 v � 	
Fk 	 Fk 	 2 cos�cos�Fk 	 2 sin�sin�Fk

�ee
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where Fk��� �
R
�1
	1 d

2re	ik
rF�r; ��. The electric field E
in Eq. (6) originates from the nonequilibrium electrons.
We now assume that the heterostructure containing the
2DES is covered by a top metallic gate, with the distance
between the 2DES and the top gate d smaller than any
lateral size of the system. Imposing this condition ensures
that the potential � in the plane of 2D plasma is propor-
tional to the nonequilibrium 2DES density  n�r�. Thus,
we can write ��r� � �4�ed=�s� n�r�, where �s denotes
the dielectric constant of the semiconductor [8]. After
Fourier transformation, we obtain Ek � 	ik�k �
	ik�4�ed=�s� nk. Simultaneously, the electron density
is expressed through the function F,  nk � FkD2D, where
D2D � m=� �h2 represents the 2D density of states. By
manipulating Eq. (6) and integrating over angles, we
obtain a closed system of equations for Fk, cos�Fk, and
sin�Fk. The 2DES density can be determined by the
functions

F k �
I1

2k0
k2 �k0W0 	 1� � I2

�1� 4d=a�0��1	 k0W0�
; (7)
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where tan' � ky=kx and k0 � �vF�ee�
	1 � 1=lee. We also

derive analytical expressions for the current densities,
jx�k� � vFD2Dcos�Fk and jy�k� � vFD2Dsin�Fk.

For the injection function, we choose

G�y; �� � Gmaxe
	�y2=L2����0 	 j�j�

2�0
; (9)

with ���� � 1 if � > 0 and 0 otherwise. The parameters
L and �0 describe the spatial width of the aperture and the
width of the angular distribution of injected electrons,
respectively. The parameter Gmax is proportional to the
injected current density in the middle of the aperture.
Using the injection function, Gmax can be related to the
total injected current, by I � jejD2DL=�2

����
�

p
�Gmax. Typi-

cally, the resistance of the injecting aperture exceeds the
resistance of the leads and thus the potential drop across
the aperture, �V, dominates the potential applied to the
system. Using the Landauer-Büttiker formalism, we can
write I � �2e2=h�N�V [15], where N represents the num-
ber of conducting modes in the aperture. Although quan-
tization of the conductance is not necessary for the
observation of the hydrodynamic effect (N can be large),
the Landauer-Büttiker formalism is rather convenient.
By combining the above equations, we obtain Gmax �
4

����
�

p
jejN=�hLD2D��V.

Numerical results for the nonequilibrium density dis-
tribution follow from the reverse transformation,  n �
D2D

R
exp�ik 
 r�Fkdk=�2��2. Figure 2 shows that  n is

large and positive inside the ballistic beam, as expected.
But  n is depressed to negative values in regions near the
main stream of injected electrons. The negative  n cor-
responds to depletion. In Fig. 3, we schematically show
FIG. 2. Calculated nonequilibrium electron density as a func-
tion of the in-plane coordinates.
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the streamlines associated with injection. Interestingly, in
the regions adjacent to the main stream, the currents flow
towards the beam. Qualitatively, we can understand this
behavior in terms of e-e scattering: the injected electrons
create an effective pressure and scatter the background
Fermi-sea electrons toward the right. Numerical calcula-
tions show that this happens not in the main stream,
where the density of excess electrons is high, but rather
on the sides of the main stream. The currents flowing
toward the main stream tend to compensate for the lack of
electrons.

The electron depletion in the vicinity of the injected
beam can lead to carrier pumping toward this beam. The
potential induced by the nonequilibrium electrons can be
expressed as ��r� � �4�ed=�s� n�r�, reflecting the fact
that a local net charge will lead to a local potential of the
same sign. If a detector aperture is situated in the region
of electron depletion ( n < 0), the detector will experi-
ence a positive potential (Fig. 3). In voltage measurement
mode, the detector can be considered a closed reservoir
with net zero current. A positive potential denotes a lack
of electrons in the detector reservoir, the result of a net
pumping of electrons toward the injected beam. We can
also consider the pumping in terms of currents. Suppose
that we turn on the injected current I at t � 0. In the
region of the detector window, the pumping effect ex-
tracts electrons from the detector. After some time, the
system reaches steady state, and the net current through
the detector window vanishes. Hence a counter current of
electrons into the detector must be generated, by a posi-
tive potential on the detector lead. If on the contrary
current is allowed to flow, electrons will be pumped
through the aperture in steady state. To achieve the steady
state pumping, we can connect the detector contact to the
Fermi sea in the right-hand side, including a resistor to
maintain the current at a level sufficiently low for the
FIG. 3 (color online). Schematic of a hydrodynamic pump in
a mesoscopically patterned 2DES. The streamlines and density
distribution are shown schematically. The detector serves as a
probe for the potential near the main beam of electrons. Inset:
The induced voltage at point A with coordinates �xA; yA� as a
function of temperature; N � 10; 2DES density � 4:8�
1011 cm	2, d � 400 �A, a�0 � 100 �A, and � � 12:5.
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FIG. 4. Calculated nonequilibrium electron density as a
function of the x coordinate in the one-dimensional system.
Inset: Schematic of a hydrodynamic pump utilizing a one-
dimensional channel with an injecting barrier and a detector
aperture.
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latter to be regarded as a weak perturbation. In all the
above cases, the positive potential induced by the hydro-
dynamic effects in the vicinity of the injected beam
effectively result in a pumping phenomenon.

According to Eq. (1), the length lee � vF�ee strongly
depends on temperature, leading to a temperature depen-
dence of the pumping effect. In the ideal disorderless
system, the pumping potential depends on the ratios
L=lee, x=lee, and y=lee [Fig. 1(b)]. It is revealing to ana-
lyze the temperature dependence of the induced electric
potential at a fixed position with coordinates �xA; yA�
where a detector window can be located (Fig. 3). Cal-
culations (Fig. 3) indicate that the potential induced by
the injected beam at the point A with coordinates �xA �
2 .m; yA � 	2 .m� is negative at low and high tempera-
tures, while for intermediate temperatures, 3–25 K, the
hydrodynamic effects render the potential positive. In
this regime, lee � xA � yA and electron-electron interac-
tion leads to just a few scattering events in the vicinity of
the detector. Therefore, the pumping effect occurs only in
the regime of a few scattering events. In addition, � /
 n / Gmax / �V / I.

In the case of one-dimensional injection (L ! 1), the
function  n�x� can be obtained from Eq. (7) by setting
Gky /  �ky�. The calculated electron density clearly dem-
onstrates the hydrodynamic effect: the Fermi sea depletes
in the region x� lee due to the effective pressure created
by the injected beam (Fig. 4). This effect can also be
applied toward a pumping mechanism involving a quasi-
1D channel featuring an injecting barrier and a detector
window, as illustrated in Fig. 4.

It is interesting to compare our results with the hydro-
dynamics of classical liquids. For example, the Bernoulli
pumping effect, resulting from the spatial variation of
local speed in the moving liquid, is quadratic in terms of
fluid speed, hence nonlinear. As a result the Bernoulli
pumping effect remains unchanged if we reverse the
current. In the 2DES case discussed in this work, the
pumping force is linear in terms of applied voltage or
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current and changes sign as we reverse the current flow.
The linearity is a consequence of the electron Fermi
statistics. Indeed, at low temperatures, we can consider
the flow equally in terms of electrons or of holes near the
Fermi surface. Physically, when the negative voltage is
applied to the injecting contact, the injected beam con-
sists of electrons which induce an effective pumping force
for the electrons from a detector (Fig. 3). When a positive
voltage is applied, the injected beam can be treated as a
beam of holes near the Fermi surface; these holes now
induce an effective pumping force for the holes from the
detector and therefore the pumping voltage reverses its
sign, along with the applied voltage.

To conclude, we have shown that the Coulomb inter-
action in an injected ballistic beam results in attractive
forces which can be exploited toward a pumping effect.
The quantum pumping described by us is a peculiar
property of a degenerate 2DES and is qualitatively differ-
ent from the hydrodynamic effects in classical liquids.
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