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We consider thermodynamic and transport properties of a long granular array with strongly
connected grains (intergrain conductance g >> 1). We find that the system’s conductance and differential
capacitance exhibits activated behavior, ~exp{—T"/T}. The gap T* represents the energy needed to
create a long single-electron charge soliton propagating through the array. This scale is parametrically
larger than the energy at which conventional perturbation theory breaks down.
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The low-temperature conductivity of granular mate-
rials continues to attract the attention of experimentalists
[1] and theorists [2,3]. From a conceptual point of view,
an attractive feature of these systems is the possibility to
separately control the effects of electron interaction and
quantum interference. A particularly interesting situation
is realized in arrays with large intergranular conduc-
tance, g > 1 (in units of e?/h), and large grain size
(small electron mean level spacing, &, in the grains).
Under conditions where all characteristic energy scales
related to 6 are smaller than the temperature, the electron
transport in such systems is purely inelastic and long
range quantum coherence is inhibited [3]. As we show
below, under these conditions interaction effects alone
lead to an exponential suppression of conductivity, which
is fully amenable to analytical treatment.

At high temperatures, the conductivity of a granular
array is Ohmic, o = g (hereafter the length of the system
is measured in the number of grains). At lower tempera-
tures Altshuler-Aronov interaction corrections [4] im-
pede the conduction behavior. For “‘inelastic” arrays
this correction was found [2] to be do = —InE,./T,
where E. is the charging energy of an individual grain.
Comparison with the Ohmic contribution shows that this
perturbative correction is small as long as T > E,. =
E.e"8. At the same energy scale, E,, a single grain
connected to external leads would cross over to the strong
Coulomb blockade regime [5-7].

In this Letter we show that the conductivity of a 1d
array of grains crosses over to a manifestly insulating
(activated) behavior at a parametrically larger tempera-
ture, T* > E_. Below the crossover, the conductivity is
exponentially small:

T*
g =g exp<—7>,

as characteristic for insulators. The gap, T*, depends on
the background charge, ¢, sitting on each grain. For an
array with globally vanishing ¢ =0, we find T* ~

T < T (1)
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E.e /% The differential capacity is also suppressed in
a way similar to the conductivity. Note that Eq. (1) is not a
result of phonon-mediated hopping, but is a consequence
of interactions between electrons only. In the intermedi-
ate temperature range, 7* < T < E_, perturbation theory
is applicable and the conductivity exhibits the logarith-
mic behavior [2].

The reason why the scale T* and Eq. (1) were over-
looked previously is that they are not visible in standard
perturbative expansions in 1/g << 1. In the conventional
formulation of the theory in terms of voltage fluctuations
[8], Eq. (1) is a consequence of large, topologically non-
trivial fluctuations (instantons). Proliferation of instan-
tons leads to insulating behavior at temperatures
T* > E., where Gaussian fluctuations are still small.
Notice that for a single grain instantons affect the con-
ductance only at much lower temperatures T = E, [9].
However, contrary to a single dot, an extended array
provides a large “entropic volume” for the formation of
instantons, which substantially increases the character-
istic temperature. We shall return to a quantitative dis-
cussion of this picture below.

It turns out, however, that the effect is more naturally
explained using a language of charge fluctuations. It is
known that even a highly conducting barrier retains some
ability to pin the charge on a single grain [5-7]. This
mechanism is drastically enhanced in the array geometry,
where it bears similarity to the pinning of charge density
waves by a periodic potential. The elementary mobile
excitations in this system are finite size solitons of unit
charge. Their activation energy, T*, is given by the geo-
metric mean of the pinning strength and inverse charge
compressibility (grain capacitance). Our main result,
Eq. (1), simply reflects the thermal density of such
single-charge solitons.

To quantify this latter picture we consider a general-
ization of a model previously employed to study quantum
dots [10]. Its simplest version treats the grains coupled by
a single conducting channel and therefore has g = 1. (We
shall show later that the predictions derived from it

© 2004 The American Physical Society 026801-1



VOLUME 92, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending
16 JANUARY 2004

survive generalization to the complementary case g >
1.) The model is formulated in terms of a charge displace-
ment field, 6;(7), where 6;,; — §; = N, is the charge on
the jth grain. In the absence of backscattering at the
contacts, the action reads

M—1
1
So= D 7D IE(0j01 = 0; = P + mw,l63] )
Jj=1 m

where the first term represents the charging energy of the
grains, while the second originates from integrating out
the continuum of the electronic degrees of freedom.
Backscattering at the intergranular contacts is described
[10] by a nonlinear action (2): Sy, =253 [dr X
cos(276(7)). Here, r is the reflection amplitude and D >
E. is conduction bandwidth.

A crucial observation that makes the problem solvable
is that even for r = 0 the quantum fluctuations of 6;(7) do
not [11] diverge in the limit 7 — 0:

YA e~ lenl/D 1 7D
(0.(1)?) =— ——=—In—, (3
J M ];) ;oEk + 7lw,| 27> €CE,

where E;, = 4E_sin?(7k/2M) is the excitation spectrum
defined by Eq. (2), and C = 0.577 is the Euler constant.
One can thus safely integrate out these fluctuations, to
arrive at a sine-Gordon type action that involves only the
classical (zero Matsubara) component of the field:

E M—1
S0 =2 > 1041 = 0, = q)* = 2ycos 2m6,)], (4)
j=1

where y = |r|e®/(27?). In the multichannel case, the
coupling constant generalizes [7,12] to y ~ [] |r,|, where
r, is the reflection coefficient of the sth channel.

Equation (4) is known as the action of the Frenkel-
Kontorova model [13]. This model describes a harmonic
elastic chain of “atoms’ with stiffness E,.., placed on top
of a periodic “‘substrate” potential with the amplitude
2yE,. The “incommensurability parameter’ g represents
the periodicity mismatch between the chain and the sub-
strate. For small values of g the system finds it favorable
to retain a commensurate state [cf. Fig. 1(a)]; i.e., the
chain stretches a little to still benefit from an optimal
coupling to the substrate. Setting 6; = 0, one finds that
the energy per ‘“‘atom” in this configuration is given by
F, = E.(g*> —2y). At |g| > 2y this energy becomes
positive, and the state with §; = 0 cannot persist as the
lowest-energy state (i.e., it is obviously less favorable than
the incommensurate state with 6; = jq and F; =~ 0).
Indeed, in the limit of weak periodic potential, the tran-
sition between the commensurate [Fig. 1(a)] and incom-
mensurate [Fig. 1(b)] phases occurs at |g| = ¢* = /2.
For the average number of electrons per grain, N(gq) =
q — 9,F/(2E,), one thus expects N(g) = 0 for |g| = ¢
(insulator) and N — ¢ for |g| > ¢* (metal).
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FIG. 1 (color online). Plot of the function (see text) N(g) of an
atomic chain in proximity to a periodic substrate. (a) Com-
mensurate configuration, (b) incommensurate configuration,
and (c) solitary excitation with its excitation energy (inset).

The relevant thermal excitations in the commensurate
state are so-called incommensurations (solitons in the
language of the sine-Gordon model)—Ilocal defects,
where the distortion #; “climbs” over a maximum of
the substrate potential to relax back into a next minimum
[cf. Fig. 1(c)]. Minimizing the action (4), subject to the
boundary condition 6., = 0(1), and employing the con-
dition y < 1, one finds that the soliton action is given by
S, = T*(q)/T, where

7*(g) "= 27E (g" ~ lq));

¢ =\2y.

As a result, at |g| < ¢* the differential capacitance scales
as 9,N(q) ~ exp( — T*(q)/T); i.e., T*(¢) is the excitation
gap of the system. Consequently, the conductivity exhib-
its the same activation behavior; cf. Eq. (1). (For an
elaboration on the conductivity, see below.) Notice that
for |g| = ¢* the gap vanishes. In agreement with our
earlier estimate, this signals a proliferation of solitary
excitations and the proximity of the incommensurate
phase.

A more thorough discussion of the system (cf. Ref. [13])
shows that insulating “plateaus” along with superim-
posed solitary excitations form not only around g = O,
but also around other rational values of ¢g. However, both
the width of these plateaus and the corresponding activa-
tion energies decrease for higher rational fractions.
Among the low lying rationals, ¢ = 1/2 plays a particu-
larly interesting role. Indeed, for a single grain, ¢ = 1/2
represents charge degeneracy point, where the system is
in a conducting state (Coulomb blockade peak). Un-
expectedly, the array exhibits a very different behavior.
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Using our current language, ¢ = *=1/2 is special in that
the atoms of the unperturbed chain alternatingly find
themselves in minima/maxima of the substrate potential.
Under these conditions, energy can be gained by building
up a “Peierls distortion” of periodicity 2 and modulation
amplitude 66; ~ y. This configuration is inert against
small variations in g (insulating). The width of the insu-
lating plateau estimates to only Ag;,, ~ v; i.e., it is much
smaller than Agy = 2¢™ ~ /7.

The above discussion was based on the arguably arti-
ficial assumption that the background charges in every
grain are the same. Under realistic conditions, though,
one expects g — g; to fluctuate. (The same applies to the
tunneling conductances and charging energies; however,
these latter fluctuations are of lesser relevance.) Let us
briefly consider an extreme limit where ¢; € [0, 1[ on the
different grains are uniformly distributed statistically
independent random variables. For an undistorted chain,
011 — 0; = g;, the potential terms 27y cos2m6; vary ran-
domly, and the energy per atom is zero on average The
system can reduce its energy 8F =~ E.y> per grain by
slightly distorting the chain, so that 66;,, —266; +
80;_y = ysin(27jg;). In analogy with the “clean”
case, the typical excitation energy of the deformed state
is ~v/E.O0F = E_.vy [14]. The conductivity of the 1d ran-
dom array is determined, however, by the largest pinning
energy rather than the typical one. Because of the lack
of space we defer this consideration to a subsequent
publication [15].

Having discussed the charge pinning mechanism in the
context of the few channel model, we next turn to a
generalization to highly conducting arrays (g > 1). To
this end we employ the so-called Ambegoakar-Eckern-
Schon (AES) model [8]. This formalism describes the
system in terms of the quantum phase, ¢ ;(7), conjugate
to the charge 6;,(7) —6;(r) of the jth grain.
(Alternatively, one may think of ¢; as the time integral
of the voltage on the grains, i¢p; = ; = V;.) The action of the
model contains two terms, S = S, + S,, where S [¢] =
> de[gﬁ?/(4EC) - iqg{}j] is the charging energy of a
grain kept at voltage V; = i¢;, and

T2M ! sin’[Ad(7) — A ()]
Sl =5 f drdr sin2(]77T(T— T')]) ©
describes the tunneling. Here A¢; = (¢;i — ¢;)/2

where i, and i¢h,, are the voltages on the leads con-
nected to the array.

Before analyzing the array in terms of the above ac-
tion, let us review a few general features of the AES
approach: (i) ignoring effects of quantum interference,
the applicability of the model is restricted [3] to tempera-
tures T > g&; (ii) the quadratlc approximation to the
action, S¥[¢] = 15;,,[4 16,12 + 2glw, || A, ], pro-
vides a complete description of the classical RC-resistor
network corresponding to the array; (iii) anharmonic
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fluctuations of the phase lead to the perturbative loga-
rithmic correction to the dc conductivity [2] mentioned in
the introduction; (iv) technically, the field ¢ ; represents a
mapping S' — S! from the unit circle (imaginary time
augmented with periodic boundary conditions) into itself
(¢ is a phase). In addition to ¢ = 0, the tunneling action
S,[&] of a single grain (which, for low temperatures T <
E., represents a good approximation to the fotal action of
the grain) possesses a set of topologically nontrivial
extremal phase configurations known as Korshunov in-
stantons [5-7,16]:

W] e2mitT

H T @)

exp(i¢?(r)) =

Here, W € Z\ 0 is the winding number of the mapping
¢@andz = (z, ..., zjy) is a set of |W| complex parame-
ters constrained by |z,| <1. The instanton action,
S[pD] = g|lW| — 277'qu, is nearly z independent [17]
which identifies the z,’s as zero modes. (Physically,
argz, determines the 1nstance and 1 — |z;| the duration
of the voltage pulse, i¢?.)

Turning to the array, the fact that the tunneling action
depends only on the differences of neighboring phases,
A¢;, implies that a “plateau” formed by L instanton
fields embedded into M — L zeros, (0,...,0, ¢, ...,
(i)(Z), 0,...,0), represents an extremal configuration. For
W = *1 its action is given by S[¢]= L(#’T/E, *
27ig) + g, an expression that suggests an alternative
interpretation of the instanton plateau: rather than moni-
toring a state of every grain, one may think of the plateau
as a dipole of two charges located at the positions of the
stepwise changes in the winding number, W;: 0 — 1 and
1 — 0, respectively. Within this picture, exp(—g/2) rep-
resents the fugacity of the charges and |L|7*T/E, their
interaction, and the g-dependent term describes the inter-
action of the dipole with a uniform electric field 27iqg.
More formally, a summation over all instanton configu-
rations followed by integration over massive Gaussian
fluctuations and zero modes [18,15] leads to the expres-
sion

E\2k M—1
E Z (7 ) e*%Zik,, V(ja *jb)*zjk D(j,) (8)
Z, (k)2 ' '
k=0 Y7 ok
where y? = g3e~ %, and the interaction potentials are
T
VUa = Jo) = F—eatslia = isli - PUa) = 27igeq)o
c

()]

with e, = (—1)?. These equations generalize from a
single dipole to the statistical mechanics of a 1d
Coulomb gas in a uniform external field. The fugacity of
the gas, yE, /T, results from multiplication of the instan-
ton action by the fluctuation factor [19].
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To understand the properties of this system, we recall
the standard mapping of a Coulomb gas onto the sine-
Gordon model [20]. In the present context, the action of
the latter is given by Eq. (4), which completes the proof of
equivalence of the two approaches discussed in this Letter
upon the proper identification of y [21]. Therefore the
activation temperature, T7%(g), is given by Eq. (5) with
vy = g3/2¢7¢/2_ Tt is worthwhile to mention that a key
element in establishing this equivalence is the factor
E./T > 1 in the fugacity of the Coulomb gas, Eq. (8).
This factor results from the large volume available to
fluctuations in the array [19] geometry; i.e., no such factor
exists for a single grain.

We finally turn to the discussion of the low-temperature
(T <T7*) dc transport properties of the array. As men-
tioned above, in the insulating phase the fundamental
excitations of our system are single-charge solitons.
Referring for detailed discussion to Ref. [15], we here
merely mention that in the presence of an external field, E,
the dynamics of these objects is controlled by the
Langevin equation

00, 0%0; . .
a_z] - gEc[ajz’ — ysin(g; + Jq)} =gE + £(1), (10)

where £(r) is a Gaussian correlated noise with
(E(E()e = gT(r — 1) and 9%6,/9j* = 6,4, — 20; +
0;_ is the discrete second derivative.

In the commensurate phase (|g| < g*) the solutions of
this equation are solitary configurations, 6;(r) = 6(j —
vt), propagating with a constant velocity, v. Substituting
this ansatz into Eq. (10), one finds v = gE, where
vy~1/2 > 1 is the soliton length. As each of these objects
carries unit charge, the current density is given by J =
env, where n = e T/T is the concentration of the ther-
mally excited solitons [7™ is given by Eq. (5) with y =
g*2¢78/2]. The linear dc conductivity of the array is thus
given by Eq. (1). The linear I-V characteristics breaks
down once the voltage drop per grain exceeds some
critical value; even in the case of the largest energy gap
(g = 0), this value is fairly low, V., = yE. < E,.

To summarize, we have considered a 1d array of me-
tallic grains connected by highly conducting contacts. We
have shown that the inelastic tunneling and weak charge
quantization lead to the insulating behavior at the tem-
perature below T* ~ E_e~¢/*. This scale is much larger
than the energy E, ~ E.e”%, where perturbative mecha-
nisms inhibiting charge transport become sizable. The
essence of this phenomenon is explained by the analogy
between the array and an elastic ‘“chain” pinned by
a periodic potential. Most importantly, even an exponen-
tially weak pinning potential leads to the formation of
a ‘“‘commensurate” phase where the differential
capacitance and the linear conductivity exhibit activation
behavior.
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