
P H Y S I C A L R E V I E W L E T T E R S week ending
16 JANUARY 2004VOLUME 92, NUMBER 2
Phonon-Mediated Electron-Spin Phase Diffusion in a Quantum Dot

Y. G. Semenov and K.W. Kim
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911, USA

(Received 9 May 2003; published 13 January 2004)
026601-1
An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot
is proposed. In contrast with the common calculations of spin-flip transitions between the Kramers
doublets, we take into account a process of phonon-mediated fluctuation in the electron spin preces-
sion and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal
g factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest
electronic states. Prominent differences in the temperature and magnetic field dependence between
the proposed mechanism and the spin-flip transitions are expected to facilitate its experimental
verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semicon-
ductor quantum dots.
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mechanisms specific to phase relaxation, which can be analysis; in fact, the theory is applicable to any local
Recently, there has been much interest in the study of
electron spin decoherence mechanisms in quantum dots
(QDs) since they are a natural candidate for the qubit
operations of quantum computing. A typical approach to
this problem is to calculate the spin transition probability
caused by the electron spin interaction with a thermal
bath [1–3]. A thermal reservoir composed of nuclear
spins is not an effective dissipative system due to the
long nuclear spin relaxation; however, the nuclei can as-
sist in the phonon-induced electron spin relaxation [4–7].

Since spin-lattice relaxation (SLR) is assumed to be
associated with spin-flip transitions between different
electron spin states, the nondiagonal spin-flip matrix
elements must be taken into account. Most studies of
SLR in the literature have analyzed various mechanisms
responsible for such transitions. Specifically, there are
two approaches to this problem. The first is based on the
spin-orbital interaction which is particular to III-V [1] or
Si=Ge [2,3] QDs. The second approach incorporates the
nuclear hyperfine interaction (HFI) [5–7] as a factor,
leaving the time-reversal symmetry for the electron
spin Hamiltonian [4].

Actually, there are no principal differences between the
aforementioned approaches to the SLR in QDs and the
early pioneering works performed in the 1960s for shal-
low donor relaxation (with the exception of the specific
electronic energy structure and the influence of strain).
Both the early works [8–10] and the later studies of QD
SLR [1–3] deal with the longitudinal (or energy) relaxa-
tion accompanying the exchange between the Zeeman
and phonon reservoirs. Note, however, that quantum com-
puting is qualitatively limited by other relaxation pro-
cesses which result in the destruction of the electron spin
phase coherence that can occur without energy relaxation.
Development of transversal (or phase) relaxation was not
the goal of the early studies nor the recent SLR research
in QDs.

In this Letter, we show that there are decoherence
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rather more effective than energy relaxation. To make this
assertion clearer, let us consider an electron spin ~ss under
the influence of a magnetic field directed along the z axis
with a randomly fluctuating strength. In this case, the
projection of electron spin on the z axis sz is conserved
and no longitudinal relaxation occurs. Nevertheless, the
phase of electron spin will change randomly with the
Zeeman frequency fluctuation �� resulting in a deco-
herence rate of T�1

2 � ��2�c. Here, �c is the correlation
time of these fluctuations [11]. This leads to a very im-
portant conclusion that the phase relaxation time may not
be determined by the matrix elements between the
Kramers doublets (i.e., spin-flip transitions), the most
important restriction on the longitudinal SLR.

In order to calculate the fluctuations in the Zeeman
frequency �, we consider the phonon-induced transi-
tions between the lowest electronic states jki which
possess different spin splitting and are not linked by the
time reversal operator. The resulting electron spin phase
diffusion due to the spin precession in a fluctuating field
is expected to be an efficient relaxation mechanism if
(i) the electron significantly changes the spin precession
frequency when the transitions between different states
jki occur and (ii) the transitions do not occur too fre-
quently [11]. In the case of a QD, these two conditions can
be easily realized due to the shallow energy levels and the
g factor or hyperfine constant dependence on the orbital
electronic states.

We begin the quantitative analysis by defining the
Hamiltonian H over the basis functions consisting of a
few lowest electronic states jki, which are involved due to
phonon-assisted transitions. We also assume that the
single-electron problem in a QD without the Zeeman
energy and HFI gives a doubly degenerate energy spec-
trum Ek with eigenstates jki. It is conveniently assumed
(but not necessary) that the spin splitting j�j is small
with respect to the energy intervals jEk � Ek0 j. The spe-
cific nature and type of the QD is unimportant for the
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electron center with spin S � 1=2. With these assump-
tions, the total Hamiltonian takes the form

H � Hs �He �Hph �He�ph: (1)

The first term Hs is the spin (or pseudospin) energy
Hamiltonian which can be reduced to the form Hs �

~�� ~ss
in the most general case. With �z � h"jHsj"i � h#jHsj#i,
�x � h"jHsj#i � h#jHsj "i and i�y � h"jHsj#i � h#jHsj"i
are now independent of the spin arguments. Its projection
on the lowest electronic states jki reads (see, for compari-
son, Refs. [8,9])

~�� �
X
k;k0

jki ~��k;k0
hk0j; (2)

where ~��k;k0 are the matrix elements of the effective field
(in units of energy) taken between the jki and jk0i states.
The spin-independent electron energies describe the
Hamiltonian He,

He �
X
k

Ekjkihkj: (3)

The Hamiltonians of the lattice and electron-phonon
interactions have the usual form

Hph �
X
q

!q

�
a�q aq �

1

2

�
; (4)

He�ph �
X
q;k;k0

Bq
k;k0 jkihk

0j�a�q � a�q�: (5)

Here q � f ~qq; �g represents the wave vector and polariza-
tion of a phonon with energy !q; �q � f� ~qq; �g, a�q and
aq are the phonon creation and annihilation opera-
tors, Bq

k;k0 is the matrix element of the electron-phonon
interaction, which depends on the material parameters
and the geometry of the QD. In Eq. (1), the last three
terms constitute the Hamiltonian of the dissipative
subsystem responsible for electron spin relaxation,
Hd � He �Hph �He�ph.

We are interested in the evolution of electron spin
~ss�t� � Trf��t�~ssg [��t� is a density matrix] in a system
with the Hamiltonian of Eq. (1). Assuming that the spin
relaxation time is much longer than the correlation time
of the fluctuating effective field (i.e., T2 � �c), one can
derive a quantum kinetic equation (see Ref. [11])

d
dt
~ss�t� � ~!!� ~ss�t� � ��~ss�t� � ~ss0�; (6)

where ~!! � h ~��i is an effective magnetic field, h. . .i �
Trfe�Hd=T . . .g=Trfe�Hd=Tg, and T is the temperature;
~!! and T are in units of energy. The matrix � of relaxa-

tion coefficients is composed of Fourier transformed cor-
relation functions �� � �� �!� � h�������� i! �
1
2!

R
1
�1h�������� iei!�d�; �;  � x; y; z; � ~�� � ~���

h ~��i; �������eiHd����e�iHd�. With a provision that
the correlation functions are symmetrical, �� �!� �
� ��!�, the matrix � � !k0

� k has a simple form in
the frame of references related to the direction of the
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effective field ~!! k ẑz: 0
xx � �0

zz � n�yy, 0
yy �

�0
zz � n�xx, 0

zz � n��xx � �yy�, 0
� � �n�� ,

(� �  ), where �0
zz � �zz�0�, n � n�!� � �1� e!=T�=2,

~ss0 � � 1
2 tanh�!=2T�f0; 0; 1g.

Thus, the problem of spin relaxation is reduced to the
calculation of correlation functions of the effective field
operator with the Hamiltonian Hd of the dissipative sub-
system. These calculations strongly depend on the specific
form of Hd, the energy spectrum, and the quantity of
electron states considered. Keeping this context in mind,
we consider the simpler problem of electron fluctuations
between only two discreet states jki � jgi or jei corre-
sponding to the ground state and the first exited (by an
interval �0) electronic energy level with Zeeman frequen-
cies ~��g and ~��e. Such a simplification allows us to easily
perform all the necessary calculations in an analytical
form. In addition, most of the important physics of the
new mechanism under consideration can be obtained in
the framework of this two-level model.

Hereafter, it is convenient to introduce Pauli matrices
#1; #2; #3 on the basis jei; jgi, where according to the
definition, #1; #2; #3 are invariant with respect to the
coordinate system rotation in contrast to actual spin
matrices ~ss. In terms of Pauli matrices, the Hamiltonian
of a dissipative subsystem takes the form Hd � Hph �
1
2�0#3 � �qBq#1�a�q � a�q�. The electron spin Hamil-
tonian now assumes the form Hs �

1
2 �
~��e

� ~��g
� ~ss �

1
2 �
~��e

� ~��g
�#3 ~ss, which defines the fluctuating part of

the effective field � ~�� � 1
2 �
~��e

� ~��g
��#3 � h#3i� with

h#3i � � tanh��0=2T� and gives the correlation functions
in the form [see the description following Eq. (6) for
reference]

�� �!� � 1
4��

e
� ��g

����e
 ��g

 �J!�T�; (7)

J!�T� � h�#3��� � h#3i��#3 � h#3i�i!: (8)

This correlation function h�#3��� � h#3i��#3 � h#3i�i
can be calculated by using the double-time Green’s func-
tion G�t; t0� � hh#3�t�;#3�t0�ii. Once solved with the
Hamiltonian Hd in a usual mean field approximation,
hha�q aq#3;#3ii � ha�q aqiG�t; t

0�, the resulting Green’s
function Fourier image G�!� is related to Eq. (8) as
G�!� i0� �G�!� i0� � �i�1� e!=T��J!�T� � h#3i

2�
[12]. The final expression takes the following form for the
case ! � �0:

J!�T� �
1� h#3i

2

!n�!�

�c
!2�2c � 1

; (9)

��1
c � 2!

X
q

jBqj
2�2nq � 1���!q � �0�; (10)

where nq � ha�q aqi is the phonon population factor for
mode q. The parameter �c has the simple physical mean-
ing of the correlation time caused by phonon-assisted
transitions between the jgi and jei states.

Actually, Eqs. (7)–(10) describe the problem under
consideration in a very general form. Before we specify
026601-2
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the electron spin interaction, which fluctuates due to the
phonon-induced transitions between the jgi and jei states,
we provide an analysis of the SLR temperature depen-
dence. In doing so, we note that the correlation time �c
given in Eq. (10) can be written as �� tanh��0=2T�, where
�� � �2!�qjBqj

2��!q � �0��
�1 is the lifetime of the

excited electron state with respect to the transition to
the ground state through phonon emission in the limit
T ! 0. Thus, for the ! � 0 component (e.g., �0

zz), the
temperature dependence of SLR is reduced to

J0�T� �
��
!
F
�
�0

2T

�
; F�x� � �1� tanh2x� tanhx: (11)

As shown in Fig. 1, the pronounced maximum in the
temperature dependence of F��0=2T� around T � �0 has
a simple physical meaning. The left of the peak corre-
sponds to the reduced hopping from the jgi to the jei state
that decreases the difference ~��g

� h ~��g
i (or the ampli-

tude of fluctuations). So, in the limit T � �0 the fluctua-
tions are frozen out and our mechanism becomes
noneffective as F��0=2T� ! exp���0=T�. The negative
slope on the right side (high temperature) arises due to the
well-known effect of fluctuation dynamical averaging,
which becomes more pronounced with an increase in
temperature.

As noted above, the correlation function !�0
zz �

!
4 ��

e
z ��g

z �2J0�T� describes the rate T�1
2 of spin relaxa-

tion if longitudinal fluctuations dominate over transver-
sal ones, �0

zz � �xx�!�; �yy�!�. Let us apply the general
theory discussed above to the mechanism of phase re-
laxation, which stems from the hopping between excited
and ground states with different g factors. In the most
general case, the reason for such a difference is the
g-factor dependence on the energy separation between
FIG. 1. Decoherence factor F��0=2T� [Eq. (11)] as a function
of temperature.
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the electron’s discrete level and the nearest spin-orbital
split electronic band. For technologically significant
III-V compounds, where the interaction with the valence
band edge determines the deviation of the electron
g factor from the free electron Landé factor g0 � 2
[13], one can find the amplitude of the fluctuation �g �
�0�g0 � g���so � 2Eg�=Eg��so � Eg�, where Eg is the
band gap and �so the spin-orbital splitting of the valence
band; we also assume inequality �0 � Eg. In the case of a
Si QD, Eg is a splitting E15 of the � point in the Brillouin
zone [9]. The relaxation mechanism due to the g-factor
anisotropy of the � band is not effective for spin flip in Si
QDs because of the specific valley orbital structure [3].
The final equation for the phonon-assisted rate of phase
relaxation caused by the Zeeman energy fluctuations is
given by

T�1
2;Z �

�g0 � g�2

4g2

�
�0��so � 2Eg�

Eg��so � Eg�

�
2
!2

0��F
�
�0

2T

�
; (12)

where �h!0 � g�BB and �B is the Bohr magneton. One
can see that our mechanism reveals a quadratic depen-
dence of T�1

2;Z on the applied magnetic field B in contrast
to the B4 � B5 dependence found in the previous calcu-
lations of longitudinal SLR through the direct processes
between the Kramers doublets (with absorption
or emission of one resonant phonon) [1–3,8,9]. Note that
the spin-flip transitions via excited states involve non-
resonant phonons and can be characterized by a quadratic
dependence on B. However, numerical estimations show
that these processes can be efficient only at high tempera-
tures [3,14].

An estimation of excited state lifetime �� can be per-
formed in terms of a deformation potential interaction
and a model of lateral carrier confinement [3]. The matrix
element of electron-phonon interaction between the jgi
and jei states in this model is Bq � iC

�������������������������
�hq=2�vkV0

p
Josc,

where Josc � Josc� ~qq� is a corresponding form factor cal-
culated in Ref. [3], C is the deformation potential, and �,
vk and V0 are the density, longitudinal sound velocity, and
volume of crystal, respectively. A straightforward calcu-
lation of inverse lifetime results in the expression

��1
� �

C2q3�+

32!2 �h�v2
k

Z 1

0
�1� z2�e�+�1�z

2�dz; (13)

where q� � �0= �hvk, + � �0=2mev2
k
, and me is a lateral

effective mass.
To show the efficiency of the mechanism under consid-

eration, we assume �0 � 2 meV [3] and calculate the re-
laxation parameters of Eqs. (13) and (12) and for a GaAs
QD under the magnetic field B � 1 T. We find that �c ’
�� � 5:8� 10�9 s, and T2;Z � 2:0 s, 1:8� 10�5 s, and
5:4� 10�8 s for T � 1 K, 2 K, and 4 K, respectively.
Similar calculations were provided for a Si QD with the
same magnitudes of �0, B, and T: �c � 3:5� 10�9 s, and
T2;Z � 2:6� 106 s, 24 s and 0.073 s. Comparing these
data with the T1 calculation of Ref. [3] shows that in spite
026601-3
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of the strong suppression of relaxation in the Si QD due to
a small deviation g0 � g, the phonon-induced g-factor
fluctuation via excited states can control the phase relaxa-
tion (i.e., T2;Z < T1) at T * 2 K. The slight anisotropy of
the g factor [10] results in some T2 dependence on the
magnetic field direction. However, this effect is expected
to be small (less than 25%) in contrast to the strong
magnetic anisotropy of T1 [3].

A qualitatively different situation arises in the case of
HFI modulation by the phonon-assisted transitions. The
distinctive feature of this mechanism is an uncontrolled
dispersion of the local nuclear field over the ensemble of
QDs due to the random distribution of nuclear spins. This
dispersion accounts for the fast (but partial) loss of initial
electronic polarization of the QD aggregate without spin
coherence loss [6,7]. Thus, we take into account the spin
relaxation of a typical QD with a mean value of nuclear
field dispersion ��n � a

��������������������������������������
2
3 I�I � 1�ßnI=VQD

q
, where I

and nI are the nuclear spin and its concentration in a
QD of volume VQD; the dimensionless parameter ß �

VQD

R
�j&e� ~rr�j

2 � j&g�~rr�j
2�2d3 ~rr is equal to 9=16! within

the approximations of Ref. [3] and a is a constant in the
HFI Hamiltonian Hhf � a~ss ~II j&� ~RR�j2 for the nuclear spin
~II located at a point ~RR and an electron with its envelope
function &�~rr�. If we set �e

z ��g
z � ��n in Eq. (7), we

readily find the following estimation:

T�1
2;hf �

ß

6
I�I � 1�

a2nI
�h2VQD

��F
�
�0

2T

�
: (14)

This equation shows the independence of T2;hf on the
magnetic field in the case of HFI-induced transitions.
An estimation of Eq. (14) (with an appropriate HFI aver-
aging over 69Ga, 71Ga, and 75As [15]) for a GaAs QD with
a typical size of 50 )A� 500 )A� 500 )A and �0 � 2 meV
gives T2;hf � 34 s, 3:2� 10�4 s, and 1:0� 10�6 s for
T � 1 K, 2 K, and 4 K, respectively. A similar estimation
performed for a Si QD with the same dimensions and
temperatures results in T2;hf � 4:1� 107 s, 3:8� 102 s,
and 1.2 s, respectively. One can see that for the considered
cases of both GaAs and Si QDs, the contribution of HFI
to the phonon-assisted relaxation is small in comparison
to that of the g-factor modulation mechanism at B � 1 T.
However, the role of HFI modulation mechanism de-
scribed in Eq. (14) should prevail at weaker magnetic
fields (B< 0:1 T). The common property of Eqs. (12)
and (14) are their inverse proportionality to the rate of
phonon-induced transitions unlike those based on the
spin-flip transition probabilities [4].

Our formulas were obtained under the assumption of a
two-level electronic structure (with regard to the orbital
degree of freedom). In a similar manner, one can consider
a many-level case. For example, the Ne excited electron
levels close together with an identical g factor or HFI can
be taken into account by replacing the tanhx term with a
function �Neex � e�x�=�Neex � e�x� in Eq. (11).
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When considering the HFI as a mechanism of spin
relaxation, we restricted our investigation to the SLR of
single, but typical, QD with a mean configuration of
nuclear spins. It is important to bear in mind that the
relaxation measurements performed on a large ensemble
of QDs correspond to averaging the relaxation curves over
random T2;hf instead of the single spin relaxation with a
mean T2;hf value. As a result, our mechanism would
predict nonexponential decay of initial electron magne-
tization in a QD ensemble.

In conclusion, we considered an efficient mechanism of
electron spin decoherence in a single QD due to the
fluctuating precession of the longitudinal (with respect
to the direction of external magnetic field) effective
magnetic field. Compared to the SLR controlled by the
spin-flip transitions, our mechanism does not involve
transitions between the Kramers doublets, which leads
to effective spin relaxation characterized by a smooth
dependence on the applied magnetic field. On the other
hand, the mechanism under consideration reveals an ex-
ponential dependence on the temperature when T � �0.
Although detailed estimation of the spin relaxation rate
depends on the specific properties of the respective QDs,
the analysis on the typical cases illustrates an advantage
of Si QDs for the quantum computing applications due to
their very long relaxation time.
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