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Onset of Collective and Cohesive Motion
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We study the onset of collective motion, with and without cohesion, of groups of noisy self-propelled
particles interacting locally. We find that this phase transition, in two space dimensions, is always
discontinuous, including for the minimal model of Vicsek et al. [Phys. Rev. Lett. 75,1226 (1995)] for
which a nontrivial critical point was previously advocated. We also show that cohesion is always lost
near onset, as a result of the interplay of density, velocity, and shape fluctuations.

DOI: 10.1103/PhysRevLett.92.025702 PACS numbers: 64.60.Cn, 05.70.Ln, 82.20.–w, 89.75.Da
Recently, we have shown how one can ensure cohesion in density � � N=L2 in periodic domains of linear size L,
Collective motion can be observed at almost every
scale in nature, from the familiar human crowds [1],
bird flocks, and fish schools [2] to unicellular organisms
such as amoebae and bacteria [3], individual cells [4], and
even at a microscopic level in the dynamics of actin and
tubulin filaments and molecular motors [5,6]. Whereas
biologists tend to build detailed representations of a par-
ticular case, the ubiquity of the phenomenon suggests
underlying universal features and thus gives weight to
the bottom-up modeling approach usually favored by
physicists [7].

In this respect, the simple model introduced by Vicsek
and collaborators [8] stands out because of its minimal
character and the a priori least-favorable conditions in
which it is defined. In the Vicsek model (VM), identical
pointwise particles move at constant velocity and interact
locally by trying to align their direction with that of
neighbors. Remarkably, even in the presence of noise
and in the absence of leaders and global forces, orienta-
tional long-range order arises, i.e., collective motion
emerges, if the density of particles is high enough or,
equivalently, if the noise is weak enough. The existence of
the ordered phase was later ‘‘proved’’ by a renormaliza-
tion-group approach based on a phenomenological meso-
scopic equation [9]. More recently, this work was
extended to the case where the ambient fluid is taken
into full account, yielding novel mesoscopic equations
for suspensions of self-propelled particles [10].

The nature of the nonequilibrium phase transition to
collective motion, however, is not well established.Vicsek
et al. concluded from numerical simulations in two and
three dimensions that it is continuous (‘‘second order’’)
and characterized by a set of critical indices, but these
results remain somewhat crude [11], even though the
undeniably minimal character of the VM makes it a
good candidate for representing a universality class.

Moreover, from a modeling point of view, an often
desirable ingredient missing in the VM is cohesion:
When put together in an infinite space, particles do not
stay together and fly apart. In other words, no collective
motion is possible in the zero-density limit of the VM.
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simple models derived from the VM without resorting to
leader particles or long-range or global forces [12].

In this Letter, we study the onset of collective motion
with and without cohesion in this very general setting,
trying to assess the universality of the results of Vicsek
et al. In both cases, we find that the onset of collective
motion in the VM and related models is actually discon-
tinuous (‘‘first order’’) and that its apparent continuous
character is due to strong finite-size effects. We also show
that without cohesion the transition point is nevertheless
accompanied by a nontrivial superdiffusive behavior of
particles which, we argue, could be measured experimen-
tally. In the presence of cohesion, our study reveals that
the onset of collective motion is the theater of a complex
interplay between density, velocity, sound, and shape
modes, giving rise to fascinating dynamics.

The original VM is defined as follows: Identical point-
wise particles move synchronously at discrete time steps
�t � 1 by a fixed distance v0. In two space dimensions—
to which we restrict ourselves in the following—the
direction of motion of particle j is just an angle �j,
calculated from the previous directions of all particles k
within an interaction range r0 � 1 > v0�t:

�t�1
j � arg

�X
k�j

ei�
t
k

�
�
�tj; (1)

where �tj is a delta-correlated white noise (� 2 ��;�).
This introduces a tendency to align with neighboring
particles, with two simple limits: In the absence of noise,
interacting particles align perfectly, quickly leading to
complete orientational order. For maximal noise (
 � 1),
particles follow random walks. The transition that neces-
sarily lies in between these two regimes can be charac-
terized by the following instantaneous order parameter:

’t �
1

N

�������
XN
j�1

ei�
t
j

�������; (2)

where N is the total number of particles.
Varying either the noise strength 
 or the particle
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Vicsek et al. found that h’i varies continuously across the
transition, suggesting the existence of a critical point [8].
Studying finite-size effects, they estimated a set of scal-
ing exponents. Interested in assessing the universality of
these results and possibly improving these estimates, we
first introduced simple modifications of the original VM
such as changing v0 or adding a repulsive force between
particles to give them a finite extent. Using the finite-size
scaling ansatz appropriate for XY-model-like systems,
domain sizes, and particle numbers similar to those
used in [8], but with much better, well-controlled statis-
tics, we were only able to estimate a roughly coherent set
of critical exponents after allowing for rather strong
corrections to scaling [13].

For modeling reasons, we also changed the way noise is
incorporated in the system. In (1), particles make an error
when trying to take the new direction they have perfectly
calculated (‘‘angular noise’’). One could argue that,
rather, errors are made when estimating the interactions,
for example, because of a noisy environment. This leads
to change Eq. (1) into, e.g.,

�t�1
j � arg

�X
k�j

ei�
t
k � 
ntje

i�tj

�
; (3)

where ntj is the current number of neighbors of particle j.
In this case of ‘‘vectorial noise,’’ the onset of collective
motion is discontinuous: For large-enough system sizes,
h’i jumps abruptly to zero as 
 is decreased, whereas it
varies smoothly in the original VM [Fig. 1(a)]. This is
perhaps best seen from the behavior of the so-called
Binder cumulant G � 1� h’4i=3h’2i2 [Fig. 1(b)]. In
the case of vectorial noise, G falls to negative values
near 
c, the sign of a discontinuous transition, together
with the phase coexistence expected then.

Going from angular to vectorial noise is indeed a less
innocent modification than those mentioned earlier: In
model (3), locally ordered regions are subjected to
weaker noise than disordered ones. However, it was un-
clear to us what precisely would be the mechanism to
change the order of the transition upon introducing this
nonlinear term. Considering in addition the strong cor-
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FIG. 1. Onset of collective motion in cohesionless models (1)
(original VM, circles) and (3) (vectorial noise, squares).
Variation of order parameter ’ (a) and Binder cumulant G
(b) with the noise strength 
. (v0 � 0:5, L � 32, � � 2, and
equivalent statistics for both models.)
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rections to scaling found with angular noise, we strived to
reach larger system sizes in some of these cases, albeit at
the cost of statistical accuracy [13]. The conclusion of
these numerical efforts is that the transition is discon-
tinuous in all cases, with finite-size effects being some-
what weaker at low densities. As an example, the behavior
of G with increasing system size shown in Fig. 2(a) for
the original VM at � � 1

8 reveals the characteristic fall to
negative values. The distribution function of ’t is bimo-
dal around threshold, without any intermediate unimodal
regime [Fig. 2(c)]. Thus, the continuous transition re-
ported by Vicsek et al. is only apparent.

In the ordered phase, the particles are organized in
density waves moving steadily in a disordered ‘‘vapor
pressure’’ background of well-defined asymptotic density
[Fig. 2(b)]. These solitary waves become metastable to a
long-wavelength longitudinal instability below the den-
sity threshold 
c (defined to be located at the minimum
of G), leading to a hysteresis loop. At threshold and
below, the disordered phase consists of nucleated ordered
patches competing in space and time [Fig. 2(d)].

At threshold, in the disordered phase, a universal non-
trivial algebraic scaling law is nevertheless found: The
superdiffusive behavior of particles already reported by
us in [14] is valid in all cases. Trajectories then consist of
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FIG. 2 (color online). Discontinuous character of the onset of
collective motion in the original VM at � � 1

8 . (a) G vs 
 at
various system sizes. (b) Transverse density (bottom curve) and
order-parameter profile (top curve) in the ordered phase (L �
1024, 
 � 0:18) (c) probability distribution function (PDF) of
’t near the transition point, t 2 ��; 500��; here the correlation
time is � ’ 105 [13], L � 512. (d) Snapshot of coarse-grained
density field in disordered phase at threshold, � � 2, L � 256.
The arrows indicate the direction of motion of dense, ordered
regions.
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FIG. 3. Onset of motion of cohesive groups in model (4) with

 � 1, v0 � 0:05. (a) h’i and n=N (normalized size of largest
connected cluster) vs � [� � 1

16 , � � 20 (liquid phase): dashed
lines, N � 4096; solid lines, N � 16 384]. Inset: solid group
(� � 84) of N � 4096 particles: dashed line, h’i; solid line,
relative diffusion of initially neighboring particles � �
h 1nj

P
k�j�1� r2jk�t=r

2
jk�t� T�ij;t, where T � 20N (� ’ 1 in

the liquid phase, while � ’ 0 in the solid phase, see [12]).
(b) Variation with � of the maximal absolute rotation angle j!j
averaged over 100 samples of 1000 vortices [N � 2048, � � 1

32 ,
� � 30 (liquid phase)]. Dashed line: h’i during the same runs.
Inset: Distribution of rotation times at the transition with decay
exponent �1:3.
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‘‘flights,’’ occurring when a particle is caught in a moving
ordered patch, separated by normal diffusion in the dis-
ordered regions. The mean square displacement of par-
ticles h�r2i varies similar to t� with � � 1:65�5.

We now turn to the onset of collective motion in the
presence of cohesion. As shown in [12], the cohesion of a
population of particles can be maintained without resolv-
ing to long-range or global interactions. In the spirit of
the VM, and following [15], a two-body short-range
interaction force competing with the alignment tendency
is introduced, leading to the model

�t�1
j � arg

�
�
X
k�j

ei�
t
k � �

X
k�j

ftjke
i�tjk � 
ntje

i�tj

�
; (4)

where � and � control the strength of alignment and
cohesion, and �tjk is the direction of the vector linking
particle j to particle k. The interaction force between
these two particles, of amplitude ftjk, is actually repulsive
up to an intermediate equilibrium distance re, with a
short-range hard core at rc and attractive up to the inter-
action range r0. In the following, as in [12], we used

fjk �

(�1 if rjk < rc
1
4
rjk�re
ra�re

if rc < rjk < ra
1 if ra < rjk < r0;

(5)

where rjk is the distance between j and k, with rc � 0:2,
re � 0:5, and ra � 0:8. Note that vectorial noise was
chosen in (4) in the hope of reaching asymptotic proper-
ties more easily.

The above model has three main parameters, �, �, and

, only two of which are independent. The phase diagram
in the ��;� plane (with 
 � 1 fixed arbitrarily) was
presented in [12], where, moreover, only neighbors in
the Voronoi sense are considered in the sums of (4). For
large enough �, cohesion is maintained, even in the zero-
density limit. This ‘‘gas/liquid’’ transition is followed, at
larger � values, by the onset of positional (quasi) order,
i.e., a ‘‘liquid/solid’’ transition. For large �, these liquid or
solid cohesive groups move, whereas they remain static
(up to finite-size fluctuations) for small �.

In the ‘‘liquid case’’ (intermediate � values), the onset
of motion is accompanied by a loss of cohesion: While
small groups set in motion smoothly without breaking up
[Fig. 3(a), dashed lines], larger groups gradually subdi-
vide into several parts of roughly equivalent size linked
by filamentary structures, in contrast with their more
compact shapes before and after onset (Fig. 4). The fila-
ments themselves are quite static [Fig. 4(d)] but are dis-
placed by the subgroups which move coherently so that
they eventually break up, as indicated by the dip in the
normalized largest connected cluster size n=N in Fig. 3(a).
Increasing �, large groups follow the same precursor of
the transition as smaller groups, but when their fragmen-
tation occurs the order parameter falls back, leaving
an intermediate peak [around � � 1:7 in Fig. 3(a)].
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Increasing � further, h’i rises again and finally jumps
to h’i � 1 when full cohesion is recovered [for � � 1:88
in Fig. 3(a)]. This discontinuous jump is the true location
of the transition: For an infinite group, the onset of
motion must occur abruptly near this value, as the pre-
cursory features described above disappear because the
population divides into infinitely many subgroups whose
influences average themselves out. Meanwhile, cohesion
is only lost at the transition point in this asymptotic
picture.

The breakup of large cohesive groups around threshold
is probably closely related to what happens in the case
without cohesion: The subgroups connected by filaments
may correspond to the ordered patches seen in the disor-
dered phase near threshold in Fig. 2(d). The breakup itself
can be seen as resulting from the maximal effect of
acoustic modes on the shape of the group [13]. Also
affecting the shape dynamics are rotational modes: The
subgroups seen in Fig. 4(a) not only move but they also
rotate slowly [16]. Rotation is not steady, but intermittent.
We recorded the rotation times and their corresponding
angles. Extremal statistics analysis reveal that the ten-
dency to rotate is maximal at the onset of motion
[Fig. 3(b)]. Moreover, at threshold, the distribution of
rotation times is algebraic with a decay exponent such
that it has no finite mean [inset of Fig. 3(b)].

The onset of motion of the ‘‘solid’’ groups (large �
values) is accompanied by a loss of positional order:
These crystals melt near the transition [inset of
Fig. 3(a)]. Given the above results in the liquid case,
one can expect very large solid groups to melt and
then subdivide and lose cohesion in the transition
region, making the onset of motion asymptotically
discontinuous.
025702-3



FIG. 4. Typical shape of a liquid cohesive group of 16 384
particles [model (4), � � 1

16 , � � 20 arrows indicate direction
of motion]. (a) At onset before loss of cohesion, � � 1:78.
(b) Static phase, round shape, � � 0:5. (c) In moving phase,
typical triangular form (see [12]), � � 2:5. (d) Closeup of a
filament; no local order is apparent.
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In summary, the onset of collective motion in the VM
as well as in related models with and without cohesion is
always discontinuous, and the critical behavior reported
in [8] is only apparent and due to (strong) finite-size
effects. Without cohesion, the ordered phase consists in
density waves propagating steadily in a disordered back-
ground. With a short-range repulsion/attraction interac-
tion, the cohesion ensured both in the disordered and
ordered phases is broken at the onset of motion under
the competing influence of sound, density, and shape
modes. The resulting mesoscopic subgroups are linked
by filaments which, however, we believe to be probably
nonuniversal, model-dependent structures.

At the theoretical level, ongoing work is directed to-
wards the understanding of the complex interplay be-
tween shape (surface tension) and acoustic modes, and
of the stability properties of the density waves. At the
experimental level, it remains difficult to study quantita-
tively bird flocks and fish schools, and, moreover, we have
no specific prediction as to the onset of motion of these
cohesive groups [17]. Without cohesion, however, the
universal superdiffusive behavior observed in the disor-
dered phase near threshold could be observed experimen-
tally. As already suggested in [14], bacteria such as E.
Coli might be good self-propelled particles. Human mel-
anocytes also look promising in this respect as shown
remarkably by the group of Gruler [4]. Finally,‘‘motility
assays’’ consisting of grafted molecular motors such as
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kinesin (respectively, myosin) moving filaments made of
tubulin (respectively, actin) might provide the simplest
setting in which to investigate superdiffusion at onset,
given the available observation techniques [5,6].
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