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Electron Thermal Diffusivity due to the Electron Temperature Gradient Mode
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Charge neutrality breaks down in the short wavelength toroidal electron temperature gradient mode.
In contrast to the ion temperature gradient mode, the wave number normalized by the Debye wave
number, k=kDe, appears as a natural scale parameter, rather than the finite Larmor radius parameter
k?�e. The growth rate and consequent mixing length estimate yields an electron thermal diffusivity
large enough to be relevant to tokamaks.
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based on the ETG mode yields an electron thermal dif-
fusivity relevant to those experimentally observed. It is
given approximately by

proximately proportional to �� in the regime �� & 1
relevant to tokamaks as shown in Fig. 1 for the case
� � 1. It should be noted that in tokamak stability
It is generally conjectured that the short wavelength
electron temperature gradient (ETG) mode [1–3] is dual
of the long wavelength ion temperature gradient (ITG)
mode, since in the former, ions are adiabatic while in the
latter, electrons are (except for the destabilizing roles of
trapped electrons on the ITG mode [4]). However, there
are some basic differences between the two modes. First,
in the ETG mode, charge neutrality does not necessarily
hold because of short wavelength nature. Second, while
the ITG mode can be stabilized by a modest plasma �
factor through the coupling of electron dynamics to the
magnetic perturbation [5], the ETG mode is quite resilient
against finite � stabilization which can occur through
equilibrium modification only at such a large � (the
ballooning parameter) as to cause an effective magnetic
drift reversal [6]. If isomorphism between the ETG and
ITG modes holds, the mixing length estimate for the
electron thermal diffusivity would be of the order of [7]
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which is smaller than the ion thermal diffusivity due to
the ITG mode by approximately a factor of

��������������
mi=me

p
, and

thus would not be relevant to the anomalous electron
thermal transport commonly observed in magnetic con-
finement devices. Here, vTe �

��������������
Te=me

p
, where LT is the

scale length of the temperature gradient, �e is the electron
Larmor radius, and mi=me is the ion=electron mass ratio.
Such small transport has indeed been observed in a
fluid simulation of the ETG mode [8] in which charge
neutrality was imposed. In a kinetic simulation without
assuming charge neutrality [9,10], thermal transport sig-
nificantly larger has been observed. The large transport
was attributed to the formation of large scale, radially
extended streamers.

In this Letter, it is shown that a simple mixing length
estimate of the electron thermal diffusivity in tokamaks
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where Ln is the density gradient scale length, �e �
Ln=LT is the temperature gradient, �cr is the critical
temperature gradient, c=!pe is the electron skin depth,
and �e � 8�n0Te=B2 is the electron beta factor. The skin
depth appears because the lower cutoff of the ETG mode
occurs at k? * !pe=c, which dominate transport. The
growth rate of the ETG mode is proportional to

������
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p

through charge non-neutrality and manifests itself in
the diffusivity even though the ETG mode is predomi-
nantly electrostatic.

The �e dependence of the growth rate may be shown
qualitatively as follows. Substituting adiabatic ions ni �
�e�n0=Ti and approximate electron density perturbation
without electron transit effect,
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in the Poisson’s equation r2� � �4�e�ni � ne�, we find
the growth rate,
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where �e � Ln=LT is the electron temperature gradient
parameter, !�e �

vTe
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I0 is the modified Bessel function, � � Te=Ti, and
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with !pe the electron plasma frequency and 	e the
cyclotron frequency. The maximum growth rate can be
found by scanning the finite Larmor radius (FLR) pa-
rameter be. When the maximum growth rate is written as
�max �

�������������������������
2Te=meLTR

p
f����, the function f���� is ap-������p
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analysis, the FLR parameter �k?�e�
2, the � factor, and the corresponding ballooning parameter � � q2�R=Ln���1


�e��e 
 �1
 �i��i� are to be specified. Then, the charge non-neutrality factor �k=kDe�2 � �k?�e�
2�e

mc2
2Te

necessarily
involves a normalized temperature.

In order to confirm the predicted �e dependence of the growth rate, we employ the following fully electromagnetic
gyrokinetic dispersion relation to find the mode frequency and growth rate of the ETG mode [11]:
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where
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h� � �i indicates averaging over the velocity with
Maxwellian weighting,
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and J0 is the zeroth order Bessel function whose argument
is k?v?=	i;e. The equilibrium ion and electron velocity
distributions are assumed to be Maxwellian and trapped
electrons and magnetosonic perturbation A? are ignored.
The norms of the differential operators based on a simple
trial eigenfunction ��"� � 1
 cos", j"j � �, have been
given in Ref. [10].
FIG. 1. The function f���� in �max � �
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obtained by scanning be in Eq. (4).
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Figure 2 shows the dependence of mode frequency and
growth rate (both normalized by the electron transit
frequency !Te � vTe=qR� on the normalized perpendicu-
lar wave number, de � �k"=kDe�

2 for two values of �,
�e � �i � 0:2% and 0.5% when Te � Ti � 5 keV in (a)
and 10 keV in (b). Other parameters assumed are Ln=R �
0:2, s � 1, q � 2, �e � �i � 2, and mi=me � 1836 (hy-
drogen). The growth rate peaks at k2 ’ 0:4 irrespective of
variation in the plasma density ��� and temperature. �
(actually, the plasma density) destabilizes the ETG mode
in two aspects: the maximum growth rate increases with
� and also the unstable regime in k2 broadens toward
smaller k2.

Figure 3 shows the mixing length estimate of the
electron thermal diffusivity,
FIG. 2. �!r 
 i��=!Te vs de � �k"=kDe�
2 when Te � Ti �

5 keV in (a) and 10 keV in (b). Solid and dotted lines show
!r=!Te and �=!Te, respectively, when �e � 0:2% and dashed
and long-dashed lines show !r=!Te and �=!Te when �e �
0:5%. Other parameters are q � 2, s � 1, "n � Ln=R � 0:2,
�e � �i � 2, and mi=me � 1840.
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FIG. 3. �e in units of Ohkawa diffusivity ��e1 � �e=�Ohkawa�
when Te � Ti � 5 keV (solid lines) and 10 keV (dotted lines).
s � 1, "n � 0:2, �i � �e � 2, q � 2, and mi=me � 1836.

FIG. 4. �e in units of !Te=k
2
De ��e2 � �ek

2
De=!Te� vs de �

�k"=kDe�
2 when (a) Te � Ti � 5 keV and (b) 10 keV for differ-

ent values of q. �e � 0:2%, s � 1, "n � 0:2, �i � �e � 2, and
mi=me � 1836.
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in units of �vTe=qR��c=!pe�
2 (Ohkawa diffusivity [12])

when Te � Ti � 5 keV and 10 keV. [The radial inverse
correlation length 1=kr is undetermined in linear analysis
and isotropic turbulence with k" � kr is assumed. The
diffusivity would be enhanced by a factor �k"=kr�2 if fully
developed turbulence is anisotropic with kr < k".] The
diffusivity clearly depends on the � factor, and Ohkawa
diffusivity is not quite applicable to thermal transport
caused by the ETG mode. This is primarily due to the
finite � (density) destabilization of the ETG mode.

Scanning the safety factor q has revealed that the
diffusivity depends on q strongly as shown in Fig. 4. In
Fig. 4, the diffusivity is normalized by !Te=k

2
De which is

related to the Ohkawa diffusivity through

!Te

k2De
� !Te

�
c

!pe

�
2 Te

mc2
:

The normalized diffusivity is proportional to q2 and since
!Te / 1=q, we may conclude that the unnormalized
diffusivity is proportional to q. (Note that Ohkawa dif-
fusivity is inversely proportional to q.) Such strong de-
pendence on the safety factor q is due to the fact that the
mode frequency and growth rate of the toroidal ETG
025001-3
mode are comparable with the electron transit frequency
!Te � vTe=qR. Scanning the temperature gradient �e
and variation of toroidicity "n � Ln=R in the low �
regime (ballooning parameter � & 1) has revealed that
the diffusivity is proportional to ��e � �cr�="n, where �cr

is the critical temperature gradient which depends on "n:
�cr ’ 0:2 when "n � 0:1, �cr ’ 1 when "n � 0:2, and
�cr ’ 3 when "n � 0:4. Implementing the dependence
on �e, q, �e, and "n, we may summarize the electron
thermal diffusivity due to the ETG mode in the following
form:
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p
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If n � 5� 1013 cm�3, Te � 10 keV, q � 3, Ln � 50 cm,
�e � �cr � 2, and �e � 1%, this yields �e ’ 1:4�
104 cm2= sec which is large enough to be relevant to
experiments. Of course, the diffusivity may still be multi-
plied by factors containing dimensionless parameters.
The factor 1=20 should not be taken too seriously, for
actual diffusivity may be enhanced by a factor �k"=kr�2,
the spectral anisotropy in fully developed ETG turbu-
lence which is beyond the realm of linear and quasilinear
analysis. For example, in fluid simulation in Ref. [8],
anisotropy of k"=kr & 3 has been seen which would en-
hance the diffusivity to
025001-3
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It is noted that the toroidicity (magnetic curvature) is
contained in the safety factor q and �e scales as

�e /
rTe

RLnB"
���
n

p ; (14)

where B" is the poloidal magnetic field. The diffusivity
in Eq. (14) in general increases with the minor radius
r which is consistent with the �e profiles observed in
tokamaks.

In summary, it has been shown that if charge non-
neutrality is considered, a natural normalization of the
wave number for the ETG mode is �k=kDe�

2, rather than
�k�e�

2. The lower cutoff of the ETG mode occurs at k? ’
!pe=c, and transport near the cutoff dominates. Con-
sequently, a large electron thermal diffusivity emerges
from a simple mixing length estimate despite the fact that
the maximum growth rate of the ETG mode occurs at a
much shorter wavelength.
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