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Time-Reversal Analysis for Scatterer Characterization
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A new application of time-reversal processing of wave scattering data permits characterization of
scatterers by analyzing the number and nature of the singular functions (or eigenfunctions) associated
with individual scatterers when they have multiple contributions from monopole, dipole, and/or
quadrupole scattering terms. We discuss acoustic, elastic, and electromagnetic scattering problems
for low frequencies. Specific examples for electromagnetic scattering from one of a number of small
conducting spheres show that each sphere can have up to six distinct time-reversal eigenfunctions
associated with it.
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configurations that possess additional symmetries (e.g., element is given by
Previous work shows that time-reversal signal process-
ing [1] and analysis [2– 4] of wave scattering data can be
successfully used to achieve superresolution in refocus-
ing through random media [5] (i.e., better focusing than
can be achieved in a homogeneous medium with the same
size array) of waves onto the location of a source — even
when the actual location of that source is unknown.
Obvious applications include communications in complex
environments such as ocean acoustics and urban cell
phone reception and transmission. Time-reversal process-
ing also produces good imaging of scatterers in random
media [6,7] as long as the magnitude of the fluctuations in
the random medium is not too large.

Most time-reversal analysis done so far has concen-
trated on the simplest (i.e., monopole) scattering behavior.
However, a different application of time-reversal process-
ing (presented here) involves characterizing scatterers by
analyzing further the number and nature of the multiple
singular functions (or eigenfunctions) associated with
each scatterer including dipole and quadrupole, as well
as standard monopole, terms when all are present and
detectable. For example, Chambers and Gautesen [8] and
Chambers [9] analyzed time-reversed acoustic scattering
for fluids when there is contrast both in bulk modulus
(monopole) and fluid density (dipole). They showed for
the case of a small fluid sphere that the orthogonality
condition for the eigenfunctions in the aperture of the
array constrains the dipole moment of the scatterer to
three possible orthogonal orientations. Each eigenfunc-
tion is generated by a linear combination of scattering
from the monopole moment and one of the three orienta-
tions of the dipole moment. This combination thus
represents four independent degrees of freedom for the
time-reversal array scattering from a fluid sphere. The
maximum number of possible eigenvalues of the system
is equal to the number of degrees of freedom (four). Fewer
eigenvalues may be observed for special array and sphere
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only three eigenvalues for a linear array). For larger fluid
spheres, additional eigenvalues are generated as higher
order scattering moments (e.g., quadrupole) become im-
portant [9]. Dependence of the eigenvalues and eigen-
functions on the scattering geometry could be used to
characterize the sphere.

The observation that the number of eigenstates of a
time-reversal system is bounded by the number of degrees
of freedom (multipole moments and orientations) in the
scattering can also be generalized to other wave systems.
If k is the wave number and a is the radius of a spherical
scatterer and we consider only small values of ka, this
sort of analysis shows that in acoustics and elasticity we
expect a single eigenfunction for monopole scattering, as
many as three distinct eigenfunctions for dipolar scatter-
ing, and from three to six more for quadrupole scattering
for elastic wave time-reversal experiments in solids, and
correspondingly (significantly) fewer modes in fluids.

In contrast, electromagnetic scattering does not permit
monopole contributions, but dipole and higher order mul-
tipole contributions are possible. Dipolar contributions
(as we show here) can come either from contrast in di-
electric properties or from conductivity. For poorly con-
ducting materials, only the dielectric scattering modes
are important. But, for highly conducting materials, both
the dielectric and the conducting properties of the scat-
terer can contribute terms to the scattering matrix. Since
the dipole is a vector quantity, there can be as many
as three contributions from each type of scattering fea-
ture —six total. Our analysis takes a form similar to that
of Tortel et al. [10], and we present a summary of it here.

Consider an array of N short, crossed-dipole elements
lying in the plane z � �za, where za is the distance
between the plane and the scattering sphere (located at
the origin in 3D). The position of the nth element is given
by the vector rn � ��n; �n;�za�. Following Krauss [11],
the electric field at the field point r radiated from the nth
2004 The American Physical Society 023902-1
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E �i�
n �Rn� �

ikeikRn

4"0cRn
R̂Rn � �R̂Rn � �dHIH

n êex � dVIV
n êey��;

(1)

where c is the speed of light, k is the wave number, �0 is
the electrical permittivity, and Rn � r� rn. The scalar
Rn is the magnitude of the vector Rn, and R̂Rn is the unit
vector in the direction of Rn. The horizontal and vertical
dipoles in the element (lengths dH and dV) are driven by
the currents IH

n and IV
n , respectively. The horizontal dipole

is oriented parallel to the x axis (unit vector êex) and the
vertical dipole is oriented parallel to the y axis (unit
vector êey).

A sphere of radius a 	 za is placed in front of the
array, centered at the origin. The field incident on the
sphere from the nth element can be approximated as a
plane wave coming from the direction of the element. For
a sphere much smaller than a wavelength (ka 	 1), the
field scattered from an incident plane wave is given to
leading order O�k3a3� [12] by

E �s��r� � �
k2eikr

r
�r̂r� �m� r̂r� p��; (2)

where p is the induced electric dipole moment and m is
the induced magnetic dipole moment generated by the
incident field. The moments are related to the incident
field E�i�

n evaluated at the position of the sphere r � 0
(Rn � �rn):

m � �m0r̂rn �E�i�
n ��rn�; p � p0E

�i�
n ��rn�; (3)

where p0 � a3�~nn2 � 1�=�~nn2 � 2�, ~nn2 � " � i4�=!, and
m0 � �iBm

1 =k3 (see [12]). The various factors are " the
relative permittivity of the sphere, � the conductivity, !
the angular frequency, and Bm

1 a quantity defined in
Ref. [12] that determines the strength of the magnetic
moment. When the conductivity of the sphere is small,
Bm
1 can be neglected to leading order, so then the magnetic

moment m does not contribute to the scattered field. In
general, p0 and m0 are complex and can be represented
in terms of magnitude and phase: p0 � jp0je

i�p , m0 �
jm0je

i�m .
The scattered field induces voltages on each array di-

pole element. From Ref. [13], the voltages induced on the
dipoles of the mth element can be expressed

VH
m � �dH�r̂rm � �r̂rm � êex�� � E�s��rm�;

VV
m � �dV�r̂rm � �r̂rm � êey�� �E�s��rm�:

(4)

Combining these with the previous expressions for the
incident field (1) and scattered field (2), we can calculate
the coupling between the voltages in the mth receiving
element and the currents in the nth transmitting element
generated from the scattering by the sphere. We define an
operator (a 3� 3 matrix) �mn � r̂rm � r̂rnI � r̂rnr̂rT

m (where
I is the identity matrix) to replace the double vector cross
products that appear repeatedly in these formulas, and
note that this operator has a character similar to that of a
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projection operator. This simplifies the algebra. The heart
of the scattering operator of interest has the general form
S � �mm�m0�mn � p0�mm��nn, and so it follows imme-
diately that

S � m0�mn � p0�mm�nn: (5)

Then the 2� 2 matrix connecting sources to receivers is
�

KHH
mn KHV

mn

KVH
mn KVV

mn

�
�

ik3eik�rm�rn�

4"0crmrn

�
dHêeT

x

dVêeT
y

�
S� dHêex dVêey �;

(6)

and the final result is�
VH

m

VV
m

�
�

�
KHH

mn KHV
mn

KVH
mn KVV

mn

��
IH

n

IV
n

�
; (7)

where the superscripts H and V refer to the horizontal and
vertical dipoles in each element and the corresponding
polarizations. (For more details see [14].) The 2� 2
matrix Kmn can then be written as

Kmn �
ik3q
4"0c

eik�rm�rn�K̂Kmn; (8)

with the elements of K̂Kmn determined by Eq. (6), where
q �

����������������������������
jp0j

2 � jm0j
2

p
. Note that K̂Kmn � K̂KT

mn by reciproc-
ity (superscript T indicates the transpose). The diagonal
elements of the K̂Kmn matrix describe the coupling
between dipoles with the same polarizations. The off-
diagonal elements describe the cross-polarization cou-
pling. Thus, all combinations of polarization coupling
are represented in K̂Kmn.

From these results, the relationship between the trans-
mitted currents and the received voltages over the entire
array can easily be constructed. Let V be the vector of
received voltages and I the vector of transmitted currents
(both with length 2N). Then we can write

V � TI; (9)

where

V � �VH
1 ; VV

1 ; . . . ; VH
m ; VV

m; . . . ; VH
N ; VV

N�
T;

I � �IH
1 ; IV

1 ; . . . ; IH
n ; IV

n ; . . . ; IH
N ; IV

N�
T;

(10)

and the 2N � 2N matrix T is assembled from all the
matrices Kmn. (The current vector I is not to be confused
with the identity matrix I.) The matrix T is the interele-
ment response matrix (transfer matrix in acoustics [15])
and is symmetric (from reciprocity). It has units of im-
pedance and can be considered the part of the radiation
impedance of the array attributable to the presence of the
sphere. Its 2N � 2N size results from the two components
of polarization for each element in the array. If only one
polarization is used (dH � 0 or dV � 0), T reduces to an
N � N matrix.

Decomposition of the time-reversal operator (TRO) is
achieved by first considering its definition TT. Its eigen-
values and eigenvectors then characterize the properties
023902-2
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FIG. 1 (color). Singular values for a conducting spherical
scatterer as a function of normalized (by the array radius
D=2) range za. Cross range for this figure is x � 0. Although
there are six singular functions for the conducting sphere, at
x � 0 two pairs of singular values are degenerate, so only four
curves are visible here.
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of the array as a time-reversal system. Each eigenvector
represents a set of complex currents that, when applied to
the dipoles in each element of the array, produces a field
that focuses on the sphere. In addition, the conjugates of
the resulting voltages from the received field will be
proportional to the transmitted currents. The constant
of proportionality is the eigenvalue and measures the
apparent strength of the scattering mode that is excited
in the sphere by the incident field. Direct calculation of
the eigenvalues and eigenvectors of TT can be unwieldy,
so the singular value decomposition (SVD) for T has
often been used instead [4]. Since T is symmetric, the
SVD is [9] T� � 
�, where the singular values 
 are
real and non-negative. The SVD can be further simplified
by factoring out common quantities. Then, letting zj �
e�ikrj , for j � 1; . . . ; N, we define

� �
1��
i

p �%1z1; %2z1; . . . ; %2N�1zN; %2NzN�
T; (11)

and 
 � k3q
4"0c &. The SVD then becomes

T̂T% � &%; (12)

where

T̂T �

2
66664

K̂K11 K̂K12 � � � K̂K1N
K̂K21 K̂K22 � � � K̂K2N

..

. ..
. . .

. ..
.

K̂KN1 K̂KN2 � � � K̂KNN

3
77775: (13)

By factoring out the complex exponential from the origi-
nal singular vectors �, the part of the phase responsible
for focusing the transmitted field on the sphere is elimi-
nated. As shown by Chambers and Gautesen [8], this is
common to all eigenvectors of the TRO in the presence of
a single scatterer. The remaining vector � represents a
slowly varying (possibly complex) amplitude distribution
over the array, which may have a pattern of nulls depend-
ing on the nature of the scattering from the sphere.

A careful deconstruction of the elements of the matrix
T̂T � T̂Tp � T̂Tm reveals that it can be expressed as a sum of
two terms (for dielectric and conducting contributions),
each of which is an outer product of three vectors:

T̂T p � �ei�p�g1 gT
1 � g2 gT

2 � g3 gT
3 � (14)

and

T̂T m � ei�m�g4 gT
4 � g5 gT

5 � g6 gT
6 �; (15)

where the vectors gj, for j � 1; . . . ; 6, are known explic-
itly from the foregoing analysis. The singular vectors for
matrices of this form can be expressed as linear combi-
nations of the vectors g1 through g6, � �

P
6
j�1 'jgj.

This fact reduces the SVD for the 2N � 2N matrix T̂T
[Eq. (12)] to an SVD of the 6� 6 matrix G (a big
reduction if N is much larger than 3) having elements
Gjl � gT

j gl:
023902-3
�ei�p

X6
l�1

Gjl'l � &'
j : j � 1; 2; 3;

ei�m

X6
l�1

Gjl'l � &'
j : j � 4; 5; 6:

(16)

Representation of the interelement transfer matrix as a
sum of a small number of products of vectors also occurs
for the acoustic case (see Refs. [8,9]). It is a consequence
of the small number of terms used in the partial wave
expansion for the scattered field (2). Here the scattered
field is generated by an electric dipole moment and a
magnetic dipole moment, each having three mutually
orthogonal orientations. The two types of moments rep-
resent 6 degrees of freedom for the construction of the
scattered field. This means that, for small ka, there are at
most six eigenvectors of the time-reversal operator, with
each eigenvector generated by a linear combination of the
fields produced by the induced electric and magnetic
dipole moments.

The analytical solution of Eq. (16) for the singular
vectors and singular values is possible, but unwieldy.
Instead, we consider the solution when the array is sym-
metric about both the � and � axes. Then all the off-
diagonal elements of the G matrix are zero except for G14

and G25 (since G is symmetric), which greatly simplifies
the solution. Results for a circular array satisfying these
conditions and having dH � dV and array diameter D are
plotted in Figs. 1 and 2. Figure 1 shows curves of singular
values for a conducting spherical scatterer as a function of
normalized range 2za=D. The value of cross range for this
case is x � 0, i.e., the center of the array. Although there
are six singular functions for the conducting sphere, at
023902-3
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FIG. 2 (color). Singular values for a conducting spherical
scatterer as a function of normalized (again by the array radius
D=2) cross range x. Normalized range for this figure is unity.
Note that, although there are six singular functions for the
conducting sphere, the top two singular values (for dielectric
dipole modes) are degenerate because of the mutual symmetry
of the sphere and the circular array.
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x � 0 two pairs of singular values are degenerate, so only
four distinct curves are visible. Figure 2 shows the sin-
gular values for the same conducting spherical scatterer
as a function of normalized cross range 2x=D. Normal-
ized range for this case is unity. Note that, although there
are six singular functions for the conducting sphere, the
top two singular values (for dielectric dipole modes) are
degenerate because of the mutual symmetry between the
sphere and the circular array.

For practical applications, it is clear that, for a fixed
range scenario and either stationary source/receiver array
with moving target or stationary target and moving
array, data such as those in Fig. 2 would also be readily
available. Furthermore, using the top two (degenerate)
singular values as the standard, and assuming at least 1%
accuracy in singular value measurement/computation, all
the singular values are detectable in principle at the
center of the circular array, but two of them decay very
rapidly as the measurement position expanded from once
to twice (or more) the radius of the array. This observa-
tion provides some information about the cross-range
location of the scattering target.

In contrast, acquiring data like those in Fig. 1 requires
either a moving target and/or nonstationary (or multiple)
arrays in order to obtain information based on the differ-
ent values of range from array to target. But again using
the top singular value as the standard, at the array center
all three of the other distinct singular values stay within
about 2 orders of magnitude (1%) of the largest out to
10 times the array radius. Thus, two widely separated
023902-4
arrays might be needed to measure the range to such a
conducting target by analysis of the computed singular
values, assuming that the arrays also have sufficient sen-
sitivity and measurement accuracy. Of course, with two
arrays so widely separated, it might be more efficient
simply to triangulate the range, while the bearing of the
target is always straightforward to determine using
traditional signal processing methods. For very distant
scatterers, only the highest two singular values (the de-
generate ones) are detectable. This is reasonable as, for
very distant targets, it becomes difficult to determine
anything about the scatterer except its bearing from a
single small array. But introduction of additional widely
spaced arrays permits triangulation for target range, and
by further combining the data from several arrays they
could then be used to do scatterer characterization along
the lines outlined here.

We find that relationships between symmetries of scat-
tering and time-reversal eigenvalues seen previously in
acoustics [15,16] carry over to electromagnetics. Similar
relationships also hold for other wave scattering problems
as well, such as poroelasticity [17].
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