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Mass Spectrum of the Two-Dimensional O(3) Sigma Model with a � Term
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Form factor perturbation theory is applied to study the spectrum of the O�3� nonlinear sigma model
with the topological term in the vicinity of � � �. Its effective action near this value is given by the
nonintegrable double sine-Gordon model. Using previous results by Affleck and the explicit expressions
of the form factors of the exponential operators e�i

�����
8�

p
’�x�, we show that the spectrum consists of a

stable triplet of massive particles for all values of � and a singlet state of higher mass. The singlet is
a stable particle only in an interval of values of � close to �, whereas it becomes a resonance below a
critical value �c.
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massless spinons at � � � are transformed into the triplet
of massive states at � � 0. It is, of course, difficult, if not

WZW model and, moreover, the only SU�2� invariant
operator in the theory that breaks parity. Thus, for a
The O�3� nonlinear sigma model is a two-dimensional
quantum field theory for a three-component, unit-vector
field n	 (	 � 1; 2; 3;n2	 � 1), with the Euclidean action
given by

A � �
1

2f2

Z
d2x�@�n	�2 � i�T; (1)

where f and � are dimensionless coupling constants and

T �
1

8�

Z
d2x����

	��n	@�n�@�n� (2)

is the integer-valued topological term related to the in-
stanton solutions of the model. This model has been the
subject of a huge amount of study for its theoretical
properties and for the large variety of its application to
condensed matter systems [1–6](see also [7]). For a ge-
neric value of �, the topological term T breaks both the Z2
invariance na ! �na and the parity space symmetry of
the action A0, symmetries which are, however, restored
at � � �. As a matter of fact, the two values � � �0; ��
are the only ones for which the action (1) is known to be
integrable. The physical properties, however, are com-
pletely different in the two cases. At � � 0, the model
consists of a O�3� triplet of massive particles, with an
exact S matrix given in [8]. At � � �, the theory is
instead massless [3,9–11] and corresponds to the renor-
malization group flow between the c � 2 conformal field
theory (CFT) and the SU�2�1 Wess-Zumino-Witten
(WZW) model at level 1, with central charge c � 1. In
this case, the spectrum of the excitations consists of
massless particles which transform according to the s �
1=2 representation of SU�2�, the so-called spinons. The
exact massless scattering amplitudes for the right and left
moving doublets are given in [10].

Nonintegrable quantum field theories.—One may won-
der how the spectrum of the theory (1) evolves by moving
the coupling �, in particular, how the two doublets of the
0031-9007=04=92(2)=021601(4)$22.50 
impossible, to provide an exact answer to this question
since the model is nonintegrable for generic values of �.
However, one can gain a significant insight about this
question by using the form factor perturbation theory
(FFPT) proposed in Refs. [12,13]. This method allows
one to study with a certain accuracy those nonintegrable
models obtained as deformation of an integrable quantum
field theory. For the theory (1) we have two possibilities;
i.e., we can either apply the FFPT in the vicinity of � � 0
or use it to analyze the nonintegrable theory defined near
� � �. For reasons that will become clear later, it is
simpler to follow the evolution of the particle content
starting from the value � � �. Let us discuss then in
more details the model in the vicinity of this point.

Double sine-Gordon model.—At ���, theO�3� sigma
model corresponds to a massless flow from the CFT with
c � 2 to an infrared fixed point described by the SU�2�1
WZW model. In the vicinity of this point, it is appropriate
to use the conformal fields of the WZW model to write an
effective action of the sigma model (1). This was done in
[2,3], and the results can be summarized as follows. Near
its infrared fixed point, the action A� corresponds to the
SU�2�1 WZW model perturbed by the marginally irrele-
vant perturbation �Tr g�2 (i.e., with ~�� > 0)

A eff
� � ASU�2�1 � ~��

Z
d2x�Tr g�2; (3)

where g is the SU�2� matrix field with conformal dimen-
sion � � � � 1

4 . Clearly ~�� is a function of f, although it
is well known that the explicit relation between these two
coupling constants is difficult to find due to the presence
of the topological term (see, for instance, [2,3] and also
[14]). Beside the symmetry SU�2�, the action (3) has also
a Z2 invariance related to the transformation g ! �g. In
terms of the WZW fields, the perturbation that moves the
topological term away from the value � � � is propor-
tional to Tr g [3]. This is the only relevant field of the
2004 The American Physical Society 021601-1
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generic value of � in the vicinity of � � �, we have an
effective action given by the following nonintegrable
perturbation of (3):

A eff � Aeff
� � ~��

Z
d2xTr g; (4)

with ~�� ’ j�� �j. At ~�� � 0 the massless particles of the
theory are the spinons, which can also be viewed as the
fundamental excitations of the IR point [15]. However,
the operator Tr g is nonlocal with respect to them. As
shown in [13] for the case of massive theories, this is the
crucial property responsible for the confinement of the
particles. The same also happens in the massless cases
[16]. Hence, in the presence of Tr g, i.e., as soon as we
move away from the point � � �, the spinons are con-
fined and the model has no longer spin 1=2 excitations. To
recover its actual spectrum near the value � � �, it is
convenient to write Eqs. (3) and (4) in terms of a scalar
bosonic field, ’, as Aeff

� �
R
d2x�12 �@’�

2 � � cos
�������
8�

p
�

and ~��Tr g � � cos
�������
2�

p
’. In this new formulation, the

effective action of the O�3� sigma model in the vicinity of
� � � is thus given by the double sine-Gordon model

A eff �
Z
d2x�12�@’�

2 � � cos
�������
2�

p
’� � cos

�������
8�

p
’�:

(5)

This is a nonintegrable quantum field theory which has
been studied in detail in [13]. In this model, the two
periodic interactions play a symmetric role and each of
the cosine term can be regarded as a deformation of the
integrable theory defined by the other [17].

Affleck’s result.—Because of the particular values of
the cosine frequencies, the quantum field theory (5)
presents a series of remarkable peculiarities which, as
we show, have far-reaching consequences on its spec-
trum. The first important peculiarity, noticed by Affleck
[18], is the special pattern of the integrable sine-Gordon
model at �2 � 2�, obtained for � � 0 in Eq. (5). In fact,
the spectrum of this integrable model consists of a soliton
s and an antisoliton s of mass m, which are degenerate
with a breather state b1. Moreover, all these particles have
the same S matrix. In addition, there is another breather
state b2 of higher mass, given by m2 �

���
3

p
m. The exci-

tations can then be organized into a triplet (s; �ss; b1) of
bosonic states of mass mt and a singlet of mass ms ����
3

p
mt, explicitly showing the hidden SU�2� symmetry of

the model at this specific point [19,20]. Their exact S
matrix can be found in [18] and is not given here.

The above pattern for the particles, in particular, the
triplet of massive bosonic states, strongly reminds one of
the spectrum of the original O�3� sigma model at � � 0.
However, one may wonder and even cast doubt on whether
this was just a fortunate coincidence that would no longer
persist in the presence of the second interaction in the
021601-2
action (5). The analysis of the double sine-Gordon model
shows, in fact, that an additional cosine term has gener-
ally a drastic impact on the spectrum of the solitonic
sector of the unperturbed theory producing, in particular,
their confinement [13]. However, this circumstance does
not occur for the theory (5), and this is the second
remarkable peculiarity of the action (5). To show that,
we apply the form factor perturbation theory.

Form factor perturbation theory.—The form factor
perturbation theory [12] allows one to estimate the varia-
tion of the spectrum of an integrable theory, once it has
been perturbed by an additional term in the action
�
R
d2x��x�. At first order in � one has

 m2i ’ 2�F
�
ii �i��; (6)

where F�ii �"1 � "2� � h0j��0�jAi�"1�Ai�"2�i is the two-
particle form factor of the operator ��x� as a function
of their rapidities parametrizing the dispersion rela-
tion Ei � mi cosh"i, pi � mi sinh"i. For a generic sine-
Gordon model

A �
Z
d2x�12�@’�

2 � g cos�’�; (7)

perturbed by another cosine term ��x� � cos	’�x�, the
evaluation of (6) may, however, be problematic. As shown
in [13], the matrix element of cos	’�x� on the soliton
states has in general a pole at " � i�, with a residue ruled
by the nonlocality index of this operator with respect to
the soliton. (The presence of this pole signals the confine-
ment of the soliton states in the perturbed theory.)
Explicitly

�iRes"�i�F�s�ss�"� � �1� cos�2�	=���h0j cos	’�0�j0i:

(8)

However, for the double sine-Gordon (5), considered as a
deformation of the sine-Gordon model (7) with � ��������
2�

p
, we have ��x� � cos

�������
8�

p
’�x�, i.e., 	=� � 2, and

the matrix element F�s�ss�i�� is instead finite. Moreover,
since this form factor is determined by the S matrix
(which is the same for all the particles of the triplet),
all of them get the same mass correction. In other words,
the initial triplet identified by Affleck in the theory (5) at
� � 0 is going to stay degenerate even at � � 0, a result
which can be proved to hold at any order in the FFPT. It
remains, then, to compute its actual correction and to
compare it with the mass correction of the second
breather. Here we present only the basic results of this
calculation, while their complete derivation and the rela-
tive discussion will be presented somewhere else [16].

The two-particle form factors of the field ��x� �
cos

�������
8�

p
’�x� on the particles of the triplet and on the

higher breather b2 can be computed by an analytic con-
tinuation of the matrix elements of the cluster operators of
the sine-Gordon model [21] (see also [22]). They can be
written, up to their vacuum normalization, as
021601-2
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F�ii �"� � �2
sinh2 12"

sinh12 �"� i �3� sinh
1
2 �"� i �3�

1

F �"�
; i � s; �ss; 1;

F�22�"� � ��4
1

6
���
3

p
F 2�i �3�

1

F 3�"�

�
1�

1

2 cosh12 �"� i �3� cosh
1
2 �"� i �3�

�

�
sinh4 12"

cosh12 �"� i 2�3 � cosh
1
2 �"� i 2�3 � cosh

1
2 �"� i �3� cosh

1
2 �"� i �3�

; (9)

where �2 � 3
2

���
3

p
F �i�� and the analytic function F �"� can be expressed as

F �"� �
Y1
k�0

�������
��k� 3

2�
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2����k�

2
3�

i"̂"
2����k�
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4
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7
6�

i"̂"
2��

�������
2

(10)

("̂" � i�� "). This function does not have either poles or zero in the physical strip 0< Im" < � and satisfies the
functional equations

F �"� i��F �"� �
sinh"

sinh"� sinhi�3
; F

�
"� i

�
3

�
F

�
"� i

�
3

�
�
cosh12 �"� i �3� cosh

1
2 �"� i �3�

sinh2 "2
F �"�:
We have, moreover, the following identity F �i�� �
F 2�i �3� �

1
3 . Using the expressions (9) we can now evalu-

ate the mass correction (6), which is given by

 m2t � 2
���
3

p
�;  m2s � 6

���
3

p
�; (11)

i.e., the first order correction to the mass of the singlet
state is three times larger than the one relative to the mass
of the particles of the triplet (Fig. 1). On the basis of the
considerations in [17], this implies the same qualitative
behavior of the masses as a function of �. Note that the
actual values of these corrections depends on the normal-
ization of the operator ��x�. One can get rid of this
problem by considering the universal quantity given by
their ratio.

This result gives a strong indication that moving away
from � � � and going toward the value � � 0, the spec-
trum evolves as follows. The particles of the triplet re-
main degenerate and stable also for finite values of �,
alias for all the renormalization group trajectories of the
SU�2�1 WZW model which asymptotically reach those of
theO�3� sigma model with � in the interval �0; ��. Hence,
these particles are those which become the triplet of the
O�3� sigma model at � � 0 and their mass Mt��� should
always be finite. Concerning the singlet, the FFPT shows
M
2

FIG. 1. Unperturbed and first order correction of the masses
of the triplet and the singlet states.

021601-3
that its mass Ms��� increases faster than Mt��� by vary-
ing �. Since at � � 0 there is no trace of this state, its
mass should become unbounded moving toward this
value, causing the complete decoupling of this particle
from the theory. It is then easy to argue, by continuity,
that this state corresponds to a stable particle of the
theory only in an interval of � near � � �. It becomes
instead a resonance below a certain critical value �c,
i.e., above �c determined by the threshold condition
Ms��c� � 2Mt��c�. Notice, in particular, that at first order
in � this equation does not have a solution for � > 0; i.e.,
the singlet is still a stable particle of the theory. The above
considerations suggest that the masses should have, quali-
tatively, the behavior given in Fig. 2, with their cusp Mi ’
��� ��2=3 at � � � dictated by the anomalous dimension
of the operator Tr g [3] (logarithmic corrections to the
power law behavior were considered in Ref. [23]).
0 1 2 3
 θ

0

M

θ
c

 π

FIG. 2. Qualitative behavior of the masses of the triplet
(continuum line) and the singlet (long-dashed line) as functions
of � in the interval �0; ��. The singlet particle is stable in the
interval above �c.
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In conclusion, the FFPT allowed us to gain new in-
sights on the spectrum of the O�3� nonlinear sigma
model with the � term in the vicinity of � � �. As soon
as � is moved away from this value, the spinons are
confined for the nonlocal properties of the associated
perturbed operator. The spectrum can be obtained by
analyzing the effective action of the model near its
SU�2�1 fixed point, given by the double sine-Gordon
model (5). The pattern of triplet massive states identified
by looking at the integrable model for � � 0 turns out
to be robust even in the nonintegrable field theory with
� � 0. The singlet state, on the contrary, belongs to the
stable part of the spectrum only in an interval of values of
� close to �, whereas it becomes a resonance below a
critical value �c. It would be interesting to reconfirm these
predictions by a numerical study of the model, as in
Refs. [11,24], and to determine correspondingly the criti-
cal value �c.
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