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Plasma density effects can cause an exponential change in charged particle nuclear reaction rates
important in stellar evolution. Reaction rates in dense plasma, with emphasis on quantum aspects, are
examined here using path integral Monte Carlo calculations. Quantum mechanics causes a reduction in
the many body enhancement of the reaction rate compared to the value for a classical system. This can
be attributed to the ‘‘quantum smearing’’ of the short range Coulomb interaction resulting in reduced
repulsion between the reacting pair and surrounding particles. Electron screening and ion exchange
effects are also examined, with screening reducing and exchange slightly increasing the many body
enhancement.
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a calculation affects both gbin�r� and H�r�, usually in the Coulomb force between classical point charges.
Introduction.—Information on nuclear reaction rates is
commonly obtained from two particle scattering experi-
ments. Applications, however, particularly in key ques-
tions of stellar evolution and inertial confinement fusion,
often involve many body environments where density
effects can produce orders of magnitude changes in re-
action rates. Quantum mechanics can markedly alter this
many body enhancement. In this Letter a systematic in-
vestigation of reaction rate enhancement due to density
effects, including electron screening and ion exchange,
based on path integral Monte Carlo calculations (PIMC)
is presented for a realistic plasma model. An intuitive
picture emerges.

The usual formula for nuclear reaction rates, R, per
volume, depends on the density of target nuclei, a nuclear
cross section�, and the flux of incident particles averaged
over a Maxwellian velocity distribution [1]. Density ef-
fects on R are included by multiplying by g�0�=gbin�0� the
ratio of the actual to the isolated pair limit of the pair
distribution function at contact.

The pair distribution function, g�r� (species subscripts
required in general are omitted for simplicity), is defined
by

ng�r� �

*
1

N

X
i�j


�r� rij�

+
� ngbin�r� eH�r�: (1)

gbin�r� is the pair distribution for a two particle system.
For a classical Coulomb system gbin�r� � exp���Z2=r�.
For the quantum case the necessary solution to the two
body problem to obtain gbin�r� can be found by routine
numerical or analytic methods [2].

The term of interest, H�r� defined here, represents
many body effects. Intuitively H�r� describes the crowd-
ing effect due to the interactions of the surrounding
particles with the reacting pair which produces an in-
crease in g�0� over the low density limit. H�0� is referred
to as the enhancement factor.

Changes in the system Hamiltonian or its treatment in
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opposite ways. For example, as shown by Gamow [3]
and others [4], a quantum treatment of the repulsive
Coulomb interaction produces a nonzero overlap proba-
bility or gbin�0�. The effect on H�0�, however, is to reduce
it from its value for a classical system. Similarly, a change
in the pair interaction reflecting increased electron
screening also increases gbin�0� while decreasing H�0�.

The importance of these many body effects to nuclear
reactions in plasma was first studied by Salpeter [5].
Dewitt, Graboske, and Cooper [6] later used the Monte
Carlo simulations of Brush, Sahlin and Teller [7] to
extract H�r� for a classical system of ions in a uniform
electron background, the one component plasma (OCP).

This Letter presents a study of quantum effects in the
many body enhancement of the contact probability for
the OCP. It is found that quantum effects significantly
reduce this many body enhancement below that found for
the classical system. This quantum reduction has an easy
intuitive explanation discussed below. Results from the
PIMC computations [8] are compared to a variety of
semiquantitative models. Previous work on this system
[9,10] has suggested that quantum fluctuations, or quan-
tum mechanical spreading, in the surrounding particles
at low temperatures cause a significant enhancement in
H�0� over the classical value rather than the reduction
found here.

The OCP does not include electron screening effects.
These effects are considered next using a screened ion-
ion potential. Finally, the importance of ion exchange on
H�0� is examined using restricted PIMC simulations.
g�0� for the quantum OCP.—Quantum effects domi-

nate at distances smaller than the de Broglie thermal
wavelength, �2d � 
h2=2�mkBT. For Coulomb systems,
this quantum smearing of the 1=r interaction has two
important consequences. First, it produces a nonzero
gbin�0�, or nonzero contact probability, which allows
charged particle nuclear reactions to occur. Second, if
�d is comparable to nearest neighbor distances, the effec-
tive repulsion between particles is reduced compared to
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gbin�r�, shown in Fig. 1, illustrates this. The lower panel
displays the nonzero gbin�0�, for both screened and
unscreened Coulomb potentials, as a function of inverse
temperature. The upper panel shows the reduction in the
effective repulsion for r < �d for several temperatures. It
is this reduction in the effective repulsion between the
reacting pair and surrounding particles which reduces
H�r� from its classical value as is shown below.

The OCP is completely specified by the coupling con-
stant � � �Z2e2=a, and a quantum parameter � � �=rs,
where a is the ion sphere radius defined by n4�a3=3 � 1,
and rs � a=aBohr, the ion sphere radius in terms of the
ionic Bohr radius. The quantum parameter is propor-
tional to the squared ratio of the de Broglie thermal
wavelength to the ion sphere radius, � � 2��2d=a

2. We
also introduce h�r� defined by �h�r� � H�r�. Unless oth-
erwise noted, lengths are ionic Bohr radii, aBohr �

h2=MZ2e2, and energies are in ionic Hartrees, Z2e2=aBohr.

The isolated pair radial distribution term is given by
the relative Coulomb pair density matrix, ��r; r0;��, at
contact [2]

gbin�0� �
V��0; 0;��R
��r; r;��dr3

�
��0; 0;��

�free�0; 0;��

� �4���3=2
Z3

2�

Z 1

0

ke��Z
2k2dk

e�=k � 1
: (2)
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FIG. 1 (color online). Top panel: Ratio of quantum � lngbin�r�
to the classical value, �=r, for various � showing initial
reduction followed by convergence to 1 at distances larger
than the de Broglie thermal wavelength. Lower panel:
� lngbin�0� for protons versus the inverse temperature in ionic
atomic units. The solid line is for the Coulomb potential. The
solid lines with symbols are for the screened Coulomb potential
at indicated screening lengths. Also shown, dotted lines, is the
high temperature approximation for the screened Coulomb
potential obtained by subtracting �! from the Coulomb result.
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Unlike the classical case where gbin�r� � exp���=r� is
zero at small r, making it difficult to extract h�0� from
simulation results, the quantum gbin�r� is finite at the
origin. Consequently, the analysis of the simulation re-
sults is relatively much easier. For � > 0:1, the computed
H�r� extrapolates without difficulty to H�0�.

Figure 2 shows the primary results of the PIMC simu-
lations: the many body enhancement factor, h�0�, as a
function of coupling constant � for � � 0:10; 0:25; 0:50;
1:0, and 2:0. The values for the classical system are taken
from [11–13]. A clear reduction in h�0� from the classical
value is seen which becomes more important at large � or
�. The trend at large � yields reaction rates orders of
magnitude lower than would be predicted by classical
models. Comparisons with several limits and models,
discussed below, are also shown. From Fig. 2 it is seen
that the total g�0� increases with density. The increase in
g�0� with temperature is a balance between two terms: the
increase in gbin�0� with temperature dominating the de-
crease in the many body term, H�0�.

As already suggested, a qualitative understanding of
the quantum effects on h�0� can be based on Fig. 1.
� lngbin�r� may be viewed as proportional to an ‘‘effec-
tive’’ pair potential. Increasing � means that more near
neighbors, located roughly one ion sphere radius from the
fusing pair, are within a de Broglie thermal wavelength.
The ‘‘repulsion’’ between these near neighbors and the
fusing pair is thus weaker than in a classical system. This
reduced repulsion makes the many body enhancement
less important than for the classical system.

For the classical system, h�0� is related to the nonideal
free energy difference between the original plasma and
one with two of the ions fused into a doubly charged ion
[6,14],
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FIG. 2 (color online). Many body enhancement factor, h�0� �
H�0�=� as a function of the coupling constant, �, for various
quantum parameters, �. Also shown is the weak coupling,
classical Debye-Huckel limit, a semiclassical approximation,
the harmonic approximation (or cell model), and a previous
estimate [9,10].
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FIG. 3 (color online). h�0� for the classical [23], � � 0, and
quantum, � � 1, Yukawa system at � � 40 as a function of the
inverse screening length ! times ion sphere radius a. ! � 0
corresponds to the unscreened Coulomb potential results in
Fig. 2.
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H�r� � ���F�1; N � 2� � F�0; N�	 �
�

4
�r=a�2 
O�r4�:

(3)

The arguments in F represent the number of doubly and
singly charged ions. Using the Debye-Huckel free ener-
gies [15] for the two cases gives the weak coupling limit,
h�0� �

������
3�

p
, shown in Fig. 2. The classical values will

approach this for � � 0:1.
For the quantum case, this free energy relation no

longer holds [16]. However, to lowest order in � and r [17]

H�r� � ���F�1; N � 2� � F�0; N�	 �
�

4a2
hr2i; (4)

where H�r� is defined based on the quantum mechanical
gbin�r�, the Fs are the fully quantum mechanical free
energies and hr2i can be calculated from the relative
part of the pair density matrix,

hr2i�r; �� �
1

�

Z �

0
ds

Z
dr0 ��r; r

0;�� s�r02��r0; r; s�
��r; r;��

:

(5)

In the classical limit hr2i � r2, reproducing Eq. (3). In
general,

hr2i�r; �� � r2 
 $�r; ��

h2�
m
; (6)

where the defined function $�r; ��, multiplying the free
particle result, tends to 1 as �! 0. The second term in
Eq. (6), and higher order corrections to Eq. (4), do not
vanish as r! 0. Therefore, the quantum H�0� is not
obtainable simply from the first term in Eq. (4), the free
energy differences.

Using Eq. (6) together with the first order Wigner-
Kirkwood quantum correction for the free energy [18],
Eq. (4) gives the lowest order quantum correction to the
enhancement factor

h�0���; �	 � h�0���; 0	 � �
�
4
�$�0;�2=�� � 1=2	: (7)

The spatial integral for $�0; �� reduces to a radial inte-
gration. The result is shown for � � 0:1 on Fig. 2 and
qualitatively reproduces the PIMC results showing sig-
nificant reduction from the classical h�0�.

At large � (� � 170 for the classical case), the OCP
solidifies into a bcc lattice which can be described in the
harmonic approximation. This approximation reproduces
the velocity autocorrelation function, even in the fluid
phase, and g�r� in the solid for r slightly inside the first
peak and beyond [19]. However, since g�r� in the har-
monic approximation is given by Gaussians centered on
the neighboring atoms with a variance depending on the
curvature of the local potential, it erroneously predicts
g�0� � 0 for the classical case and is of little use in
predicting H�r� at small r for � � 0.

Explicitly, the pair distribution function in the har-
monic approximation is [20]
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(8)
where M is the pair displacement correlation matrix
calculable from the eigenvectors and eigenfrequencies
of the dynamical matrix and the Ri are lattice sites.

Although always an overestimate, the harmonic ap-
proximation result for h�0� at large � and �, where it
should be most reliable, reproduces the trends and asymp-
totic behavior shown by the PIMC results as seen in Fig. 2.

Also shown in Fig. 2 is a fit from an earlier PIMC study
[10]

h�0� � 1:132� 0:0094 ln�

� �5=32�%2�1� 0:0348%� 0:1388%2 
 0:0222%3�


 0:0015%3; (9)

where %3=2 � 2
�

�������
��

p
. Although the first two terms in this

fit, representing the classical h�0�, have the wrong func-
tional form at low �, the succeeding quantum corrections
are in agreement with the present PIMC results. This is at
variance with the suggestion in [9] that there is an en-
hancement associated with magnified, coherent quantum
fluctuations of the surrounding particles near the pair
undergoing fusion.

Screened Coulomb potentials.—The OCP model dis-
cussed above ignores electron screening. We consider
the Yukawa potential, V�r� � e�!r=r, as an example of
an effective electron screened ion-ion potential. In appli-
cations the inverse screening length ! may be approxi-
mated from the plasma dielectric function [21]

! � lim
r!0
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FIG. 4 (color online). Effect of ionic exchanges in the quan-
tum OCP on the enhancement factor h�0� at � � 10 for oppo-
site spin particles. The system contained an equal mixture of
spin up and spin down particles.
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These effective ion potential simulations could be supple-
mented by PIMC computations on hydrogen, explicitly
including electrons at low values of � [22].
gbin�0� is shown for this potential for several ! values in

the lower panel of Fig. 1. At high temperature, where the
thermal de Broglie wavelength is much less than the
screening length 1=!, the potential difference �e�!r �
1�=r may be approximated as constant so gscreenedbin �0� �
exp��!�gCoulbin �0�. This constant potential difference ap-
proximation is valid and widely used in most astrophysi-
cal applications [1] but, as seen in Fig. 1 (lower panel,
dotted lines), it can dramatically overestimate gbin�0� at
low temperatures.

Screening has been shown to reduce h�0� in the classi-
cal OCP [23]. Its effect in the quantum OCP, shown in
Fig. 3, is similar. The reduced repulsion from surrounding
ions due to screening again reduces the enhancement
effect.

Exchange effects.—Since the quantum parameter � is
related to the ratio of de Broglie thermal wavelength to
the ion sphere radius, it is expected that ion exchange
effects could become important under extreme conditions
when � � 1.

The restricted PIMC simulation technique is used to
deal with the fermion sign problem [24]. Free particle
nodes are used to restrict the paths. Unlike the preceding
computations, restricted PIMC is approximate but is ex-
pected to be highly accurate for this system [25].

Because of the Pauli principle the contact probability is
zero for particles with the same spin. This effectively
increases the ion repulsion and is expected to increase
h�0�. The results in Fig. 4 show, however, only a slight
enhancement over a wide range of the quantum parameter
� and confirm that ion exchange effects are unimportant
for �< 1.
021101-4
In conclusion, quantum effects have been shown to
significantly reduce the many body enhancement factor
which determines nuclear reaction rates in dense plasmas.
Electron screening effects produce a further reduction
while ion exchange effects are minor.
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