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Quantum Vacuum Contribution to the Momentum of Dielectric Media
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Momentum transfer between matter and electromagnetic field is analyzed. The related equations of
motion and conservation laws are derived using relativistic formalism. Their correspondence to various,
at first sight self-contradicting, experimental data (the so-called Abraham-Minkowski controversy) is
demonstrated. A new, Casimir-like, quantum phenomenon is predicted: contribution of vacuum
fluctuations to the motion of dielectric liquids in crossed electric and magnetic fields. Velocities of
about 50 nm=s can be expected due to the contribution of high frequency vacuum modes. The proposed
phenomenon could be used in the future as an investigating tool for zero fluctuations. Other possible
applications lie in fields of microfluidics or precise positioning of micro-objects, e.g., cold atoms or
molecules.
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separate identification of different parts proved itself to are given by
Electromagnetic radiation possesses energy, linear
momenta, and angular momenta like any ordinary mate-
rial object. However, the fundamental question of the
momentum associated with a photon in an optically
dense medium is still under discussion [1,2], despite
that it was formulated in the beginning of the previous
century. This problem arises from the discrepancy be-
tween Minkowski’s [3] GM � 1=4�c

R
d3xD� B and

Abraham’s [4] GA � 1=4�c
R

d3xE�H results, where
E, H, D, and B are electric and magnetic fields and
inductances correspondingly. Their difference is signifi-
cant: while Minkowski’s moment is directly proportional
to the refractive index of the medium, Abraham’s moment
possesses inverse proportionality.

Minkowski momentum is considered by many as un-
acceptable, although it was shown by Jones, Richards,
and Leslie (JRL) that the recoil force of the light on a
mirror immersed in liquid is directly proportional to the
refractive index of the liquid [5]. This experiment was
conducted twice within a 20 year period [6]. However,
most of the theoretical works are in favor of Abraham’s
expression (for a review, see Refs. [7,8]).

Abraham’s momentum can be derived from the
Poynting energy flow vector S � �c=4��E�H under
the assumption that all energy is purely electromagnetic
and relates to the mass through the U � mc2 relativistic
formula. It corresponds to the relativistic requirement for
direct proportionality of the energy and momentum flows
(the symmetry of the electromagnetic stress tensor) [9].
Abraham’s result is also supported by statistical physics
approaches [10]. However, as far as we know, there are no
experimental data that demonstrate the inverse depen-
dence of the radiation pressure on the refractive index.
This, at least, allows one to conclude that the measured
momentum is not purely electromagnetic.

The effective momentum of a photon in a dielectric
medium consists of electromagnetic momentum and as-
sociated motion or even radiation of matter [7]. However,
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be nontrivial and sometimes led to contradictions with
experimental data [6]. Blount [11] and Nelson [12] devel-
oped a Lagrangian formalism of the problem, using
heuristic and microscopic averaging approaches corre-
spondingly. They significantly clarified the picture by
associating Abraham’s expression with electromagnetic
momentum and Minkowski’s momentum with phonon-
like pseudomomentum. Still, several questions remained
open, especially a small discrepancy of Abraham’s mo-
mentum with the expression derived in Refs. [12,13].

In this Letter the related Lagrangian and correspond-
ing equations of motion are derived using relativistic
formalism. In the case of liquid dielectric, interaction
of the electromagnetic field with matter causes motion
of the latter. Thus, while Abraham’s expression is indeed
the momentum of the field, the measured momentum also
includes the matter contribution, and its value coincides
with Minkowski’s result. Afterwards the possible vacuum
contributions to the motion of the matter are considered.
Each electromagnetic mode possesses finite momen-
tum, even in its ground state. Thus, modification of the
modes by matter can alter the momentum of the vacuum.
The latter generally vanishes due to counterpropagating
modes that cancel each other’s contribution. This situation
can be different, however, in materials that are tempo-
rally and spatially asymmetric.

The electromagnetic field in an optically dense me-
dium is described by the Maxwell equations:

r�H �
1

c
@D
@t

; rD � 0;

r� E � �
1

c
@B
@t

; rB � 0:

(1)

The free electric E and magnetic B fields exist both in-
side and outside the matter. The matter response to the
radiation is taken into account through derived fields D
and H, related to E and B by the dispersion relations. In
the case of linear, nondispersive dielectric medium they
2004 The American Physical Society 020404-1



P H Y S I C A L R E V I E W L E T T E R S week ending
16 JANUARY 2004VOLUME 92, NUMBER 2
D � "E; H � B=�; (2)

where " and � are the dielectric and magnetic constants
of the matter correspondingly.

The Lagrangian which is equivalent to Eqs. (1) and (2)
is

LField �
Z

d3x
1

4�

�
"
2
E2 �

1

2�
B2

�
: (3)

The first pair of the Maxwell Eqs. (1) corresponds to the
equations of motion,

@
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�
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;
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@LField

@ @�
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�
@LField

@�
; (4)

while the second pair of (1) follows from definitions of
the vector A and the scalar � potentials:

E � �
1

c
@A
@t

�r�; B � r� A: (5)

The motion of the matter and especially its influence on
the electromagnetic field must be taken into account in a
combined matter-field Lagrangian LMF. The linear dis-
persion relations (2) change in moving media to

D � "E�
"� � 1

c�
v � B;

B � �H �
"� � 1

c
E� v;

(6)

where first order v=c terms were taken into account [14].
They follow from relativistic requirements and can be
derived using the first order Lorentz transformations:

E ! E�
1

c
v� B; B ! B�

1

c
E� v; (7)

D ! D�
1

c
v �H; H ! H �

1

c
D� v; (8)

relative to (2). These transformations can be applied
directly to the Lagrangian (3). Substituting (7) into (3),
keeping the first order v=c terms and adding �v2=2, one
obtains

LMF �
Z

d3x
�
1

2
�v2 � LField �

"� � 1

4��c
B�E� v�

�
: (9)

Since the liquid is assumed to be incompressible, it is
described by its density � and local velocity v only. The
equations of motion (4) of (9) are identical to the Maxwell
equations with dispersion relations (6). The last term of
(9) can be rewritten in an interaction Aj form, where the
current j is given by r� �E� v��"� � 1�=�c. The lat-
ter, at least for the nonmagnetic � � 1 case, can be
obtained by microscopic averaging procedures [9,12].

The Lagrangian (9) is explicitly independent of the
space coordinates x, due to the homogeneity of space.
Thus, according to Noether theorem, the momentum

Gi �
Z

d3x
�
@L
@vi

�
@L

@ @Aj

@t

@Aj

@xi

�
(10)
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is conserved. Substituting (9) into (10) one obtains

G �
Z

d3x
�
�v �

1

4�

�
"
c
E� B�

"� � 1

�c
E� B

��

�
Z

d3x
�
�v �

1

4�c
E� H

�
: (11)

The corresponding angular momentum l � x �G be-
comes

l �
Z

d3x
�
x � �v �

1

4�c
x� E� H

�
: (12)

Therefore the conserved linear (11) and angular (12)
momenta consist of the matter and Abraham’s field terms.
The correspondence between the conserved and the mea-
sured momenta follows from the analysis of the Lorentz
force acting on material objects [9].

The �v term can be obtained from the liquid’s equation
of motion,

@
@t

@L
@v

�
@L
@R

; (13)

where R is the matter coordinate. Far from the bounda-
ries, @L=@R can be neglected, leading to

�v �
"� � 1

4��c
E� B: (14)

This expression corresponds qualitatively to the pseudo-
momentum of Ref. [12]. Substituting (14) into (11), one
obtains G � D� B=4�c, which was observed in the JRL
experiments [15].

By analogy, the measured angular momentum is l �
x� �D� B�. It can be separated into ‘‘spin’’ D� A and
‘‘orbital’’

P
Dj�x�r�Aj parts. In contrast to the linear

momentum, the spin part of the nearly plane wave is in-
dependent of dielectric properties of the medium. This
was verified experimentally for microwave radiation [16].

The dielectric constant dependent angular momentum
was observed inside a cylindrical capacitor filled with
dielectric [17]. The observed [18] x � �v / �"� 1�l0,
where l0 corresponds to the " � 1 case, follows from
(14) [19].

Ashkin and Dziedzic observed that the liquid interface
bends outwards the liquid in both cases when light enters
and leaves the liquid [20]. Contrary to their measurement,
the conservation law (11) predicts inward bending.
Loudon recently arrived to the same conclusion by quan-
tum analysis of the Lorentz force [1]. The results of
Ref. [20] were explained by the influence of ponderomo-
tive forces [21], caused by strong focusing of the light
in this experiment. These forces, also used for optical
tweezers, are much stronger than contributions from the
change of the radiation momentum on the boundary.

Radiation forces can be caused even by redistribution
of the energy between quantum vacuum and matter.
Attraction of two parallel metal plates in vacuum was
predicted by Casimir [22] and experimentally observed
by Lamoreaux [23]. Electromagnetic field possesses finite
020404-2
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energy even in the ground state, similar to the quantum
harmonic oscillator. The presence of dielectric or metallic
objects in space alternates the eigenstates of the electro-
magnetic field. The energy of such a system depends on
the specific arrangement of the objects, and some re-
arrangement can be energetically favorable. However, in
the Casimir case, no momentum is gained by the plate’s
center of the mass according to symmetry considerations.
Moreover, to the best of our knowledge, the transfer of
finite momentum from vacuum modes to matter was not
considered yet.

The zero fluctuations contribution to the equation of
motion (14) can be expected, since the moment of the
electromagnetic field, similar to its energy, is a quadratic
function of E and B. Vacuum contribution cannot occur,
neither in time-even media nor in spatially symme-
trical time-odd (Faraday) materials, due to the self-
compensation of counterpropagating modes. Therefore,
both time and spatial asymmetries are required (see
Fig. 1).

The break of both spatial and time symmetries occurs
naturally in magnetoelectric materials [24,25]. The dis-
persion relations for magnetoelectrics are

D � "̂"E� �̂�H; B � �̂�H � �̂�TE: (15)

The same dispersion can be created artificially by apply-
ing external electric and magnetic fields [26]. In this case,
the dielectric properties of the medium "̂", �̂�, and �̂�
depend on the external fields Eext and Bext. For the specific
case of perpendicular electric and magnetic fields acting
on isotropic material [27,28]

�̂� �

0
@ 0 �xy 0

�yx 0 0
0 0 0

1
A; (16)
Vacuum Field Vacuum Field 

Matter Matter
E

B

Applied

quantumclassicalv v+

FIG. 1 (color online). Vacuum fluctuations contribute to the
motion of dielectrics in crossed electric and magnetic fields.
Applied fields convert matter to magnetoelectric by breaking
both spatial and time symmetries. Inside a magnetoelectrics
the momenta of counterpropagating vacuum modes [k��!� and
k��!�] do not eliminate each other, in contrast to the other
materials. Therefore, the vacuum field gains a finite momentum
each time the fields are turned on. The latter is compensated by
the motion of the matter itself. The vacuum fluctuations in-
duced flow in dielectric liquids with vvacuum  vclassical 
50 nm=s was predicted theoretically in external crossed electric
and magnetic fields.
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while "̂" � "ÎI and �̂� � �ÎI. For light propagating along
the z � Eext � Bext direction, substituting (15) and (16)
into Maxwell Eqs. (1) one obtains [28]

n ~kk;1 �
�������
"�

p
� �xy; n ~kk;2 �

�������
"�

p
� �yx;

n
� ~kk;1 � �

�������
"�

p
� �xy; n

� ~kk;2 � �
�������
"�

p
� �yx:

(17)

and corresponding modes �Ex; Ey; Bx; By�

�1; 0; 0;
�������
"�

p
�; �0; 1;�

�������
"�

p
; 0�;

�1; 0; 0;�
�������
"�

p
�; �0; 1;

�������
"�

p
; 0�:

(18)

In the case of magnetoelectrics (15), the term
�1=��B�̂�TE must be added to the Lagrangian (9). Using
(7) one obtains

LME � LFM �
Z d3x

4�

�
1

�
B�̂�TE�

1

�c
B�̂�T�v� B�

�
1

�c
�E� v��̂�TE

�
: (19)

Equations of motion (4) correspond to the dispersion
relations (15) in moving media, while (13) becomes

�0v�
1

4�

�
"��1

�c
E�B�

1

�c
E���̂�TE��

1

�c
B���̂�B�

�
:

(20)

The noncompensating moment of a pair of counter-
propagating modes in the z direction is �p �
��xy � �yx��1 � "��=�2��c�. It is obtained by substitu-
tion of (18) into (20). Taking into account all contributing
modes and �p�'� � �p cos', we obtain

v�
1

�
1

2�
1� "�

�c

ZZ
0;1

�=2;2�=!cut

�ncos'k2E2 dk

�2 sin'd'; (21)

where �n � ��xy � �yx�. The vacuum E2
vac � �h!=2; thus,

Eq. (21) becomes

v �
1

32�3

1

�
�n

1 � "�
�

�h!4
cut

c4 : (22)

This expression is significantly different from the
Casimir effect, since it is powered by the high frequency
cutoff. The latter makes it more similar to the Lamb shift
phenomenon.

This effect (22) can be evaluated quantitatively by the
estimation of the value of �n from the known experimen-
tal data. In crossed external magnetic Bext and electric
Eext fields, �n is proportional to magnetoelectric suscep-
tibility *? [29]:

�n  �32*? � 1
2*jj�EextBextl�1

0  *?EextBextl�1
0 ; (23)

where l0  0:3 nm is the characteristic interatomic dis-
tance. This result follows from the spherically symmetric
system’s fourth order energy terms L � 1=4*?E2B2 �
1=4�*jj � *?��EB�2 and D � @L=@E relation. The �xy �
�yx  10�11 was recently observed [26] by measurement
020404-3
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of magnetoelectric linear birefringence (17) in external
electric Eext � 105 V=m and magnetic Bext � 17 T fields.
The contribution of the nonlocal terms [26,30] to �n,
leading to �n / 1=+, can significantly increase the value
of (22). However, taking into account that �n  �xy �
�yx  �xy � �yx, the *?  0:1 a:u:, which corresponds
to the experimentally observed �n  10�11 [26] accord-
ing to (23), is in the range of theoretical predictions
[31,32]. Therefore, �n is assumed to be constant in the
integral of Eq. (21).

According to (22), vvac  50 nm=s in external fields
Eext � 105 V=m and Bext � 17 T. The cutoff frequency
!cut was chosen to correspond to a wavelength + �
2�c=!  0:1 nm, since for higher frequencies the mo-
lecular polarization vanishes. Density �  103 kg=m3,
�n  10�11, and dielectric constant "  1:5 were as-
sumed. The contribution of the static field (14) is
vclassical  20 nm=s. In the JRL experiment the estimated
velocity from (14) was vlaser  10�15 m=s (the laser beam
intensity was about 105 W=m2). The experimental mea-
surement of (22) requires effective homogeneity of the
matter. Otherwise, Eqs. (14) and (20) are not valid. Thus,
the region of the crossed fields must be produced locally,
similar to the laser beam in the JRL experiment. It can be
done, for instance, by immersing a capacitor’s electrodes
inside the liquid.

In conclusion, relativistic formalism was applied for
light-matter Lagrangian derivation. Equations of motion
were obtained and their correspondence to the Abraham-
Minkowski controversy related experimental data was
demonstrated. The received results correspond to
Abraham’s predictions, while Minkowski’s momentum
can be obtained from (9) without its last ‘‘motion of the
matter’’ term. Therefore the origin of the controversy lies
in the underestimation of the fact that the field-matter
interaction is impossible without the motion of the latter.
The vacuum fluctuations induced flow in dielectric liquids
with vvac  50 nm=s was predicted in external crossed
electric and magnetic fields. The significant property of
this phenomenon is the high frequency vacuum modes
contribution, similar to the Lamb shift effect.
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