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Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow
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Experimental observations of droplet size sustained oscillations are reported in a two-phase flow
between a lamellar and a sponge phase. Under shear flow, this system presents two different steady
states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low
and high shear rates, the droplet size results from a balance between surface tension and viscous stress,
whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for
such kinds of oscillations is discussed.
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function of time. Those oscillations are asymptotic (i.e., constant stress.
Homogenizing immiscible fluids by the use of shear
flow is an everyday experience and a fundamental step
in the processing of soft materials [1]. By fragmenting
large domains, the flow opposes the thermodynamics
instability driving phase separation and leads to the for-
mation of nonequilibrium steady states in which the
coarsening is stopped [2]. Since the pioneering work of
Taylor [3] on isolated Newtonian emulsions, the study of
the rupture and deformation of isolated droplets under
shear flow has drawn much attention. For Newtonian
fluids, the dispersed phase forms generally somewhat de-
formed spherical droplets of the breakup size: R � �=
� _��, where � is the surface tension between both phases, �
is the shear viscosity, and _�� is the shear rate [3]. However,
when the shear response of the fluids exhibits complexity
as in semidilute entangled polymer solutions [4], near cri-
tical mixtures [5], lamellar-sponge phase-separated mix-
tures [6], or emulsions [7], other steady state structures
such as cylindrical domains (known as the string phase),
two-dimensional domains (ribbons phase), or colloidal
crystals made of droplets are observed. Predicting the
steady state domain morphology which results from the
interplay between the flow, the surface tension, the vol-
ume fraction of the two phases, and their viscosities is
a real challenge in nonequilibrium physics. Moreover,
for a wide class of complex fluids, several different struc-
tures can be obtained under shear flow; these steady states
are thus separated by out-of-equilibrium transitions.
Depending on the nature of the rheological transition
(shear thinning or shear thickening) and on the imposed
dynamic variable (stress or shear rate), structural bista-
bility and/or coexistence between structures character-
ized by shear banding can be seen [6,8,9]. Because energy
is constantly brought into the system, these transitions are
also expected to lead to richer behavior such as bifurca-
tions to oscillatory states or even to chaos [10–14].

The purpose of this Letter is to show for the first time
on two-phase flow that the droplet size can be a periodic
0031-9007=04=92(1)=018305(4)$20.00 
they do not correspond to a transient regime) and display
a huge period of time, typically a few thousands of
seconds.

We study a pseudobinary mixture made of sodium
bis(2-ethylhexyl) sulfo-succinate (AOT) and brine (water
and sodium chloride) [15]. At T � 25 �C, for low salini-
ties (S � 14 g l�1), flat bilayers of AOT stack upon each
other and a lamellar phase (L	) is observed. At high
salinities (S � 20 g l�1), the bilayers interconnect ran-
domly and result in a Newtonian bicontinuous phase re-
ferred to in the literature as sponge phase (or L3 phase)
[16]. For intermediate salinities, coexistence between L	
and L3 phases is found. We prepare solutions in the two-
phase (L	=L3) region with 20 wt:% AOT (from Fluka)
and 80 wt:% brine (S � 17 g l�1) and let them rest for a
few weeks to reach equilibrium. Because of a density mis-
match between the two phases, an interface appears and
the volume fraction of L	 phase (65% at T � 25 �C) can
be measured directly from the observation of the position
of this interface.

Experiments.—As previously described [17], small
angle static light scattering experiments (SALS) are per-
formed at imposed shear rate with a homemade trans-
parent Couette cell, with gap e � 1 mm and inner radius
Ri � 16 mm. In short, a circularly polarized laser beam
(He-Ne,  � 632:8 nm) passes through the cell along rv,
the shear gradient direction, and probes the sample in
only one of the gaps. The scattered pattern correspond-
ing to light scattered in the velocity-vorticity (v; z)
plane is digitalized, by means of a CCD videocamera
for the frame acquisition. Experiments at imposed
stress (rheology and SALS) are performed with a com-
mercial rheometer (SR5, Rheometrics), using a transpar-
ent Mooney-Couette cell with gap e � 0:7 mm and inner
radius Ri � 14 mm. To investigate the effect of flow on
the (L	=L3) phase region, the solution is stirred in order
to obtain a macroscopic homogeneous mixture, before
introducing it into the Couette cell and shearing it at a
2004 The American Physical Society 018305-1
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Results.—After a transient regime which is a few hours
long, a steady state (i.e., _�� does not any longer vary) is
reached (see Fig. 1). This steady state I is characterized in
SALS by a scattering ring with a well-defined sixfold
modulation of its radial intensity (see Fig. 2). It does not
depend on initial conditions and is determined only by
the value of �, the applied stress. If the flow is stopped,
the ring persists during a few tens of minutes with same
size, indicating that this shear-induced structure is meta-
stable. Microscopic observations reveal that this homoge-
neous structure consists of monodisperse closed-compact
multilamellar droplets [18] (inset of Fig. 2). The ring
corresponds to the characteristic size of these closed-
packed droplets, and its modulation shows the existence
of a hexagonal order in the positions of the droplets.When
the stress is increased, the value of the steady shear rate
increases accordingly to _�� / �2 (indicating a shear thin-
ning of the sample since the viscosity � varies as � �
AI _���1=2, see Fig. 1). The size of the ring becomes larger
and larger indicating that the steady droplet size R de-
creases. At a well-defined stress �c � 30 Pa, a tran-
sition characterized by a jump in the measured shear
rate occurs between steady state I and another steady
state, labelled II. Above this transition, the scattering
pattern consists also of a ring with six well-defined spots
and the viscosity varies as � � AII _��

�1=2. Although both
steady states have similar rheological and microscopic
features (see inset of Fig. 2), they can, however, be easily
distinguished since the scattering ring and therefore the
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FIG. 1. Steady shear rate _�� vs stress � for T � 25 �C and
S � 17 g l�1 (�) and S � 17:15 g l�1 (�), the equations of
the solid lines are as follows (respectively for S � 17 g l�1

and S � 17:15 g l�1): _�� � 0:042�2 and _�� � 0:036�2 in re-
gion I, _�� � 0:410�2 and _�� � 0:620�2 in region II. For both
steady states (S � 17 g l�1 and S � 17:15 g l�1), � � Ai _��

�1=2

with AI � 6:05 Pa s1=2 and AI � 5:18 Pa s1=2, AII �
1:73 Pa s1=2, and AII � 1:33 Pa s1=2. Insets: Shown are the
steady droplet sizes (S � 17:15 g l�1) for region I (�) and II
(�) versus 1=�. Solid lines are linear fits R / 1=�.
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characteristic droplet size vary discontinuously at the
transition (Fig. 2).

To study the nature of the transition between states I
and II, we now perform the same experiment at fixed
shear rate. Figure 2 shows the evolution of the steady
droplet size R, deduced from SALS measurements, as a
function of _��. Two stationary branches, labelled I and II,
are observed for _�� � 100 s�1 and _�� � 300 s�1, respec-
tively. They correspond to the two steady states already
observed in rheology (see Fig. 1). For intermediate shear
rates (i.e., 100 � _�� � 300 s�1), very surprisingly, we do
not observe any longer steady states, but instead oscilla-
tory states. The size of the scattering ring oscillates in-
definitely in time, indicating that the size of the droplets
becomes a periodic function of time (Fig. 3).

Although these data have been recorded and digital-
ized for one day (�8� 104 s), we have observed them
visually over more than a week, with no amplitude and
period shifts during this time. The droplet size increases
very slowly (the typical duration of the growth is a few
thousands of seconds long) and bursts out suddenly (in a
few tens of seconds). During the continuous growth of the
droplets, no spatial inhomogeneities, such as bands, are
observed in the (v; z) planes.When the laser beam probing
the structure is moved along the vertical z direction, the
size of the scattering ring (and therefore the droplets size)
remains constant in the whole cell. During the burst out of
the droplets, the solution becomes turbid, the scattering
ring vanishes, and horizontal bands are then observed in
FIG. 2 (color online). Variation of R the characteristic size
measured from the position of the scattering ring in SALS with
_��. Circles and triangles correspond, respectively, to S �
17 g l�1 and S � 17:15 g l�1. Closed (�,�) symbols represent
steady states and open (4,
) symbols stand for the maxima
and minima of the size during oscillations. The solid straight
lines represent the best fits for S � 17 g l�1 and S �
17:15 g l�1, having slopes �1=2. Inset: Shown are the textures
observed between crossed polarizers at _�� � 100 and _�� �
230 s�1 and the corresponding SALS patterns.
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FIG. 3 (color online). Temporal evolution of R�t�, for S �
17:15 g l�1 and _�� � 130 s�1. Shown is the temporal evolution
of the scattering pattern in the (v; z) plane.
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FIG. 4. Temporal evolution of R�t�, for (a) _�� � 23 s�1 from
an initial shear rate of _�� � 54 s�1, the solid line corresponds
to the best fit using an exponential expression: R �
6:08� 2:75 exp��t=650�, (b) _�� � 125 s�1, (c) _�� � 150 s�1,
(d) _�� � 175 s�1, and (e) to _�� � 250 s�1 for t < 20 000 s and
_�� � 280 s�1 for t > 20 000 s.
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the Couette cell. These reproducible oscillations are ob-
served both upon increasing or decreasing the shear rate,
for different parameters of the Couette cell (gaps and
radii). The transition I-Oscillation occurs at a well-
defined shear rate _��c � 100 s�1, whereas the transition
between Oscillation and II presents a hysteretic behavior
for 230 � _�� � 300 s�1 (Fig. 2). Their period (a few
thousands seconds) is many orders of magnitude larger
than the period of rotation of the rotor (a few seconds)
and varies with _�� (see Fig. 4). These observations rule out
any artifacts, such as a possible coupling with an external
perturbation (building vibrations, temperature fluctua-
tions, etc.). They clearly prove that the oscillations corre-
spond to a nonlinear relaxation process.

Discussion.—These observations are very different
from most unsteady flows reported in complex fluids,
since they involve large relaxation oscillations between
two different structural states (I and II) [19]: The droplet
size oscillates. We believe that a better understanding of
the transition I/II may provide us some insights to the
oscillation mechanism. For both steady states, R varies as
_���1=2, whereas � / _���1=2. These two scaling laws suggest

that the droplet size results in both states, from a balance
between surface tension and viscous stress, yielding to the
018305-3
well-known relation [3]

R �
�
� _��

�
�
�
: (1)

Within this picture, the surface tensions � can be
obtained from the slopes of the linear fits R vs 1=�
displayed in the insets of Fig. 1. This estimation, re-
spectively, leads to �I � 9:5� 10�5 Nm�1 for state I
and �II � 11:5� 10�5 Nm�1 for state II. Both values
are compatible with what is expected from a dimen-
sional analysis, namely, � � kBT=l2, where kBT is the
thermal energy and l a correlation length of the mixture
of the order of a few hundreds of angstroms (typically the
smectic distance in the phase L	 or the pore size of the
phase L3). The transition I/II seems therefore related to a
discontinuity in the surface tension between both coex-
isting phases. We believe that a compression of the multi-
lamellar droplets occurs at this transition yielding to
release of the solvent outside, and as a consequence to
the change in �. Such a phenomenon which has already
been evidenced in a L	 phase [20] is compatible with the
018305-3
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discontinuous jumps of the viscosity and the size ob-
served at the transition I/II. It may also explain the
turbidity enhancement occurring when the droplets burst.
Within this picture, there is a critical pressure �c, above
which the droplets compress and release water. More in-
sights on such mechanism can be gained by considering,
for instance, the following differential equation, describ-
ing a first-order phase transition induced by Laplace
pressure between region I (uncompressed state, � � 0)
and region II (compressed droplets, � � 1):

_�� � �
1

�1

�
�
����=R� �c

�c
� 	�2�� 1�

 �2�� 1�3
�
: (2)

Next to this transition, if the shear rate is increased, the
size R slightly decreases (since R / _���1=2). Then, the
Laplace pressure �=R becomes higher than �c and water
is expelled from the droplets. This water release de-
creases the viscosity and consequently the viscous stress.
Because of Eq. (1), the droplet size then increases again
and the Laplace pressure decreases. As a result, the water
goes back into the droplets and the same mechanism
starts over, leading to sustained oscillations. Because
permeation of water through membranes is a very slow
process [21], such a scenario may explain the very large
time scales involved in our observations, as suggested in
Ref. [10].

In a first approach, for simplicity’s sake, we consider
that the temporal evolution of R�t� is driven by the follow-
ing first-order kinetics:

_RR � �
1

�2

�
R�

����

���; _��� _��

�
; (3)

with ���� � �I�1���  �II�, and ���; _��� �
A��� _���1=2, where A��� � AI�1���  AII�. Taking for
AI, AII, �I, �II, �c the values found experimentally (Figs. 1
and 2) and �2 � 650 s (Fig. 4), our simplified two equa-
tions reproduce the two steady branches observed experi-
mentally for both the droplet size and the viscosity. For
intermediate shear rates, in a given range of the 	 and �1
parameters, it may also lead to sustained droplet size
oscillations [22]. The transient banding behavior observed
during the fast burst of the droplets suggests that an
overall description requires the setup of space and time-
dependent nonlinear coupled differential equations. Such
approaches are currently being developed with success by
theorists to describe spatiotemporal flows of complex
fluids [12,13]. We hope that our experiments on a model
system will stimulate such theoretical researches.

In conclusion, we have shown, in a two-phase flow, the
existence of nonlinear structural oscillatory states for
which droplet size is a periodic function of time. These
oscillations are monitored by a shear-induced change of
the surface tension between both phases. We therefore
believe that such a mechanism is general and may also
018305-4
be found in other systems exhibiting shear-induced phase
transitions such as, for instance, micellar solutions, liquid
crystals, liquid crystal polymers, etc.

As a final comment, this new result raises now an
important question: Can the droplet size display chaotic
behavior? We believe that this question will be a major
topic of research in the study of rheochaos [12] in the
near future.
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