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Experiments performed in a thin layer of the Belousov-Zhabotinsky solution subjected to a global
feedback demonstrate the existence of the resonance attractor for meandering spiral waves within a
domain of circular shape. In an elliptical domain, the resonance attractor can be destroyed due to a
saddle-node bifurcation induced by a variation of the domain eccentricity. This conclusion explains the
experimentally observed anchoring of spiral waves at certain points of an elliptical domain and is in
good quantitative agreement with numerical data obtained for the Oregonator model.
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Recent experiments demonstrate that reaction-
diffusion systems subjected to a global feedback control
can exhibit very rich spatiotemporal dynamics [1-3]. In
particular, a spiral wave (generic pattern in excitable
media) can be effectively manipulated applying global
feedback [3,4]. This opportunity is important for various
applications, e.g., for the low voltage defibrillation of
cardiac tissue [5]. It was shown recently that the size of
the excitable domain is a very essential control parameter
affecting the stability of the rigidly rotating spiral or
changing the radius of the resonance attractor (motion
of the spiral wave core along a closed circular orbit) [6,7].
These findings allow one to assume that the shape of the
excitable domain can also have a great impact on the
dynamics of spiral waves.

We report in this Letter experimental results for the
evolution of meandering spiral waves in circular and
elliptic domains under global feedback focusing on the
effect of the domain shape on their dynamics. Then we
present a theoretical approach that allows one to deter-
mine the velocity field of the resonant drift induced by
the global feedback. Finally, the predictions of this ap-
proach are compared to numerical data obtained for the
underlying reaction-diffusion model.

The experiments were performed with the light-
sensitive version of the Belousov-Zhabotinsky (BZ) reac-
tion by the use of an open reactor [8]. A premixed feeding
solution prepared from stock solutions containing
[NaBrO;], =2.06 X 10~ M (Aldrich, 99%), [H,SO,], =
30.1 X 10~! M (Aldrich, 95%-98%), malonic acid (MA)
[CH,(COOH),], = 1.86 X 107! M (Aldrich, 99%), and
[NaBr], = 4.12 X 1072 M (Fluka, 99%) is pumped con-
tinuously through the reactor with the rate 120 ml/h.
Circulating water from a thermostat maintains the tem-
perature at 25.0 = 0.5 °C. The catalyst is immobilized in
a silicahydrogel layer of 0.5 mm thickness (active layer)
prepared on a plate of frozen glass (diameter 63 mm). To
protect the active layer from stirring effects, it is covered
by an inactive gel layer not loaded with the catalyst.
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The active layer is illuminated by a video projector
(Panasonic PT-L555E) controlled by a computer via a
frame grabber (Data Translation, DT 2851). The illumi-
nating light is filtered with a bandpass filter (BG6, 310—
530 nm). Every second, the pictures of the oxidation
waves appearing in the gel layer are detected in trans-
mitted light by a charge-coupled device camera (Sony
AVC D7CE) and digitized with a frame grabber (Data
Translation, DT 3155) for immediate processing by the
computer. During the same time step, the signal control-
ling the projector can be changed in accordance with the
processed information to close the feedback loop.

A single spiral wave is created in the gel disk by
breaking a wave front with a cold intense light spot.
The location of the spiral wave tip is defined on-line as
the intersection point of contour lines (0.6 X amplitude)
extracted from two digitized images taken with time
interval 2.0 s. The tip trajectory can be visualized during
the experiment by the computer.

An unperturbed spiral has a wavelength A = 2.0 mm.
Its tip describes a meandering trajectory containing about
four lobes. The rotation period measured far away from
the symmetry center is T, = 40 s.

To realize a global feedback, the illumination intensity
I(?) is computed as

1(t) = Iy + kgp[B(t — 1) — By, (1

where B(r) specifies an image gray level g(x, y, 1) averaged
over the integration area S:

1
B(t) = 3 f g(x, y, )dxdy. ()
N

The area S represents a virtual excitable domain as illus-
trated in Fig. 1. Constants [, and kg, and 7 in (1) deter-
mine the background intensity, the gain, and the time
delay in the feedback loop. Constant B, specifies the
integral B(z) computed for a spiral wave rotating around
the center of a circular domain.
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FIG. 1. Snapshot of a spiral wave rotating in a thin layer of
the BZ reaction. The dashed line indicates the boundary of an
elliptical integration area S. Scale bar: 1 mm.

Figures 2(a)—2(c) show spiral tip trajectories of the
feedback induced drift observed in a circular domain
for different time delays 7 in the feedback loop. While
for 7 = 0 the trajectory of the spiral center reaches a
circular orbit of radius R, = 0.65A, for 7/T, = 0.32
the attractor radius decreases to R, = 0.451 [see
Fig. 2(b)]. For 7 = 0.5T, the spiral core center tends
towards the domain center that corresponds to R, = 0.
Figure 3 summarizes the experimental results for the

FIG. 2. Resonant drift of a spiral wave induced by a global
feedback with ks, = —1.5, By = 25, and I, = 70. (a)—(c) Circu-
lar domain of radius R = A; (d) elliptical domain with large
axis @ = 2A = 4 mm and small axis b = a/1.25. In (a) and
(d), the time delay is 7 =0, in (b) 7/T, = 0.32, and in
(¢) 7/Ts = 0.5. Initial spiral tip locations are marked by
arrows. Scale bar: 1 mm.

018304-2

radius R, of the resonance attractor as a function of the
time delay 7 in the feedback loop.

Figure 2(d) demonstrates a qualitatively different drift
trajectory observed in an elliptical domain. After a tran-
sient process, the drift velocity vanishes and the spiral
waves rotate around some point located at a distance of
about 0.6A from the domain center.

In order to explain these experimental findings, note
that the reason for the resonant drift is a periodic modu-
lation of the illumination intensity I(¢) [9—11], induced by
variations of the integral B(r) [see Eq. (1)]. If the spiral
wave core moves rather slow, the integral B(r) oscillates
with the rotation period T, of the spiral wave. Only the
first component in the Fourier series of the periodic
modulation causes a resonant drift [12,13]. This first
component can be written as A cos(wf — ¢), where w =
27/T,, and the amplitude A and the phase ¢ depend on
the location of the spiral core center. These dependencies
can be found rather easily under assumption that far away
from the core center a rotating wave front can be approxi-
mated by an Archimedean spiral

O(r,1) = 0y — ZTWr + wt, 3)

where (0, r) are polar coordinates with origin at the core
center. The integral B(f) should be proportional to the
arclength L of the spiral wave front within the integration
domain, since an excitation wave in the BZ solution looks
like a rather thin stripe [7].

These assumptions allow one to reduce the estimation
of the amplitude A(x, y) and the phase ¢(x, y) to a pure
geometrical procedure. We imagine that the center of an
Archimedean spiral described by Eq. (3) with ®; = 0 is
placed at a point (x, y). Then the arclength L of the spiral
within a domain of a given shape will be a periodic
function of time and the first Fourier component of this
function gives us the amplitude A(x,y) and the phase
&(x,y) of the integral B(z). The modulation amplitude
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FIG. 3. The radius R, of the resonance attractor (asterisks) as
a function of the time delay 7 observed experimentally in a cir-
cular domain of radius R; = A. Solid curves and dashed curves
represent radii of the resonance attractors and the unstable
orbits obtained from Eq. (6) with ¢ = —0.82.
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of I(¢) will be proportional to A(x, y) due to Eq. (1) and
the modulation phase will be shifted by w7 with respect
to ¢(x, y).

If the induced drift is so slow that the shape and the
angular velocity of the rotating spiral remain always the
same, the absolute value of the core velocity V(x,y) is
proportional to the amplitude A(x, y) and the drift direc-
tion is specified by an angle

y=¢+or+ dky). 4)

Here ¢ is a constant that specifies the direction of the
drift induced in the case 7 =0 and ¢ = 0. Then the
motion of the core center can be described as a system
of two ordinary differential equations:

dx dy :
o V(A) cosy, o V(A) siny. (5)
Figure 4(a) shows the drift velocity field obtained by
application of the described procedure for a circular shape
of an excitable domain of radius R; = A with zero time
delay 7 =0 and ¢ = —0.5. The drift velocity V(x,y)
vanishes at the domain center representing an unstable
node. This node is surrounded by a stable limit cycle, at
which the drift velocity is constant V(x,y) = V. and
orthogonal to the radial direction. This limit cycle repre-
sents the resonance attractor of spiral waves [7].
Because of the rotational symmetry of the circular
domain and in accordance with Eq. (4), the drift will be
orthogonal to a radial displacement R only when

ot + ¢R) =057 — ¢ + 27n. (6)

This condition determines the radius R of a circular orbit
as a function of the time delay. The orbit is stable if n =
2m [7]. The radius R, of the resonance attractor computed
from Eq. (6) as a function of the time delay is shown in
Fig. 3 by solid lines. It predicts rather well the experi-
mental data shown by asterisks. Dashed curves in Fig. 3
specify radii of unstable orbits with n = 2m + 1 separat-
ing basins of attraction.

Figure 4(b) shows the velocity field corresponding to a
domain of elliptical shape. The large ellipse axis a is
equal to 2A and its ratio to the small axis b is equal to
a/b = 1.25. The deviation with respect to a circular
shape drastically changes the velocity field plotted in
Fig. 4(a). While in a circular domain the drift velocity
along the resonance attractor is constant, a deviation from
the circular shape induces variations of the drift velocity
along the orbit. At some segments the drift becomes
faster, at other slower than in the circular domain. A
closer inspection reveals that, when the eccentricity of
an elliptical domain is large enough, the tangent compo-
nent of the drift velocity vanishes at two diametrically
opposite saddle-node points where A(x, y) = 0. Beyond
the bifurcation, for eccentricity larger than the critical
value, saddles and stable nodes separate from each other
and two pairs of fix points emerge, as shown in Fig. 4(b).
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FIG. 4. Velocity field of the spiral core drift induced by the
global feedback computed in the approximation of an
Archimedean spiral for (a) a circular and (b) an elliptical
domain with a/b = 1.25. Open (filled) circles indicate unstable
(stable) nodes. Semifilled circles show saddles. Initial four
lobes of the tip trajectories (thin solids) and the trajectories
of a core center (thick solids) computed from the reaction-
diffusion model (7) are shown.

This bifurcation destroys the former limit cycle corre-
sponding to the resonance attractor. Depending on the
initial conditions, asymptotically the spiral wave can
approach one of two stable nodes and remains anchored
at this point at a distance of about 0.6 from the domain
center.

The results of this theoretical consideration are com-
pared with the numerical data obtained by integration of
the Oregonator model of the BZ reaction:

d 1 -
—M=V2u+—[u—u2—(fv+1)—u q}

ot € u-+gq

Jv (N
—=u—u.

ot

Here the variables u# and v correspond to the concentra-
tions of the autocatalytic species HBrO, and the oxidized
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form of the catalyst, respectively. The parameters € =
0.05, ¢ = 0.002, and f = 2.0 were fixed. The term [ =
I(r) describes the bromide production that is induced by
the external illumination [14]. The computations were
performed by the explicit Euler method on a 380 X 380
array with a grid spacing Ax = 0.2 and time steps At =
0.002. In order to simulate a global feedback, I(¢) is
determined by Egs. (1) and (2) with g(x,y,1) =
v(x, y, 1), Iy = 0.01, ky, = —0.1, and B, = 0.06.

The trajectory of the core center computed from the
reaction-diffusion system (7) in a circular domain is
shown in Fig. 4(a) by a thick solid curve. The location
of the final circular orbit and the whole transient process
correspond very well to the determined drift velocity
field. The trajectory obtained for the same initial core
location in an elliptical domain is shown in Fig. 4(b). In
this case, the spiral core after a transient process remains
to be anchored near one of the stable nodes of the pre-
dicted velocity field.

Thus, the performed experimental study provides the
very first observation of the resonance attractor for a
meandering spiral wave subjected to a global feedback.
The radius of the attractor orbit can be effectively ma-
nipulated by varying of the time delay in the feedback
loop. It is found also that the shape of the excitation
domain plays an extremely important role for the dynam-
ics of spiral waves under global feedback control. In
particular, a relatively small deformation of the domain
shape can destroy the resonance attractor and create
separate attracting points [see Fig. 2(d)].

The theoretical approach developed in [7] for the
analysis of spiral wave dynamics under weak feedback
control is generalized here in two ways: It is expanded to
the domains of arbitrary shape, and it is extended to the
case of a meandering spiral waves. For a circular domain,
this approach predicts the dependence of the resonance
attractor radius on the time delay in the feedback loop in
good agreement with the experimental results (see Fig. 3).
For an elliptical domain, it allows one to explain the
experimentally observed anchoring of the spiral wave at
certain points in the medium. The predicted locations of
the new nodes are in perfect agreement with numerical
integrations of the Oregonator model (see Fig. 4) and with
the experimental data shown in Fig. 2(d).

The proposed approach is based on two common as-
sumptions: (i) The spiral wave has an Archimedean shape
(e.g., see [15,16]) and (ii) the drift velocity is slow. Hence,
the obtained results can be applied to media with quite
different local kinetics. While the light-sensitive BZ re-
action is the most convenient object for an experimental
investigation of feedback controlled excitable systems,
spiral waves are intensively studied in the context of
catalytic surface reactions [2] and excitation waves in
cardiac tissue [17] also. In the last case, the spatiotempo-
ral evolution of the fast variable u# (transmembrane po-
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tential) rather than slow variable v (oxidized form of the
catalyst in the BZ reaction) is measured. This, however,
does not influence the main results reported in this Letter,
because to plot the drift velocity field one needs to de-
termine such characteristics of a spiral wave (A, w, @),
which do not depend on what kind of variable is recorded.

In conclusion, besides the domain size, the time delay
7, and the gain kg, in the feedback loop, the shape of the
excitable domain proved to be another essential control
parameter for spiral wave dynamics under global feed-
back. We reveal in this Letter bifurcations in the velocity
field of resonant drift induced by variation of the do-
main shape, which are connected with dramatic changes
in the dynamics of the spiral wave. The study of corre-
sponding bifurcations under combined variations of the
domain shape, size, and/or the time delay in the feedback
loop is an interesting challenge from the theoretical point
of view and an important task for various practical
applications.

The authors thank the Deutsche Forschungsgemein-
schaft (DFG, SFB 555) for financial support.

[1] V.K Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and
I. Epstein, Nature (London) 406, 389 (2000).

[2] M. Kim, M. Bertram, M. Pollman, A. von Oertzen, A.S.
Mikhailov, H. H. Rotermund, and G. Ertl, Science 292,
1357 (2001).

[3] O.U. Kheowan, C. K. Chan, V.S. Zykov, O. Rangsiman,
and S. C. Miiller, Phys. Rev. E 64, 035201(R) (2001).

[4] V.S.Zykov, A.S. Mikhailov, and S. C. Miiller, Phys. Rev.
Lett. 78, 3398 (1997).

[5] A.V. Panfilov, S.C. Miiller, V.S. Zykov, and J. P. Keener,
Phys. Rev. E 61, 4644 (2000).

[6] O. Kheowan, V.S. Zykov, and S. C. Miiller, Phys. Chem.
Chem. Phys. 4, 1334 (2002).

[7]1 V.S. Zykov and H. Engel, Phys. Rev. E 66, 16206 (2002).

[8] M. Braune and H. Engel, Phys. Rev. E 62, 5986 (2000).

[9] K L Agladze, V. A. Davydov, and A.S. Mikhailov, JETP
Lett. 45, 767 (1987).

[10] M. Braune, A. Schrader, and H. Engel, Chem. Phys. Lett.
222, 358 (1994).

[11] S. Grill, V.S. Zykov, and S. C. Miiller, J. Phys. Chem. 100,
19 082 (1996).

[12] V. A. Davydov,V.S. Zykov, and A. S. Mikhailov, Usp. Fiz.
Nauk 161, 45 (1991) [Sov. Phys. Usp. 34, 665 (1991)].

[13] R.M. Mantel and D. Barkley, Phys. Rev. E 54, 4791
(1996).

[14] H.-J. Krug, L. Pohlmann, and L. Kuhnert, J. Phys. Chem.
94, 4862 (1990).

[15] N.Wiener and A. Rosenblueth, Arch. Instit. Cardiol. Mex.
16, 205 (1946).

[16] A.T. Winfree, Science 175, 634 (1972)

[17] J. M. Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter,
and J. Jalife, Nature (London) 355, 349 (1992).

018304-4



