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Shear Melting of a Hexagonal Columnar Crystal by Proliferation of Dislocations
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A hexagonal columnar crystal undergoes a shear-melting transition above a critical shear rate or
stress. We combine the analysis of the shear-thinning regime below the melting with that of synchrotron
x-ray scattering data under shear and propose the melting to be due to a proliferation of dislocations,
whose density is determined by both techniques to vary as a power law of the shear rate with a 2=3
exponent, as expected for a creep model of crystalline solids. Moreover, our data suggest the existence
under shear of a line hexatic phase, between the columnar crystal and the liquid phase.
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locations, �. Both techniques show that � increases with
the shear rate as a power law with the same exponent 2=3,

progressively aligned along the velocity direction as _		
increases, although a state with the tubes perfectly
Understanding the behavior of complex fluids under
flow is essential for their processing and technical use
[1]. The relevance of nonlinear rheology for a wide range
of applications has motivated many fundamental studies,
both theoretical and experimental. However, the rheology
of structured fluids is not well understood yet, despite
robust experimental facts such as shear banding associ-
ated with marked modifications of the structure or tex-
ture. This very general behavior is observed in a large
variety of materials including amorphous, crystalline, or
liquid crystalline systems. Among liquid crystals, two-
dimensional (2D) solids, or hexagonal columnar crystals,
have been the subject of very few studies, but these
materials should deserve particular attention because of
both applicative and fundamental grounds. Their close
analogy, in terms of elasticity and phase diagrams, to
2D magnetic flux line lattices (FLL) in type II high-Tc
superconductors is appealing. On the other hand, as co-
lumnar liquid crystals are extensively used for the syn-
thesis of mesoporous materials [2], understanding and in
turn controlling their structure under flow may lead to
some technological advancements.

We use synchrotron small-angle x-ray scattering
(SAXS) and rheology to investigate the behavior under
shear of a soft hexagonal columnar crystal, which con-
sists of oil tubes arranged on a triangular lattice in water.
Rheological experiments show a shear-induced transition
between two states of markedly different viscosities. The
low viscosity high shear rate structure is a 2D liquid of
tubes, thus indicating that, above a critical shear rate or
shear stress, a shear can induce the melting of the long-
range 2D order of the tubes [3]. We exploit the analogy
with FLL to derive a scenario for the melting of the soft
hexagonal columnar crystal and propose the melting to be
due to a proliferation of dislocations. We combine the
analysis of the shear-thinning regime below the melting
transition and that of the SAXS patterns under shear to
extract the shear rate dependence of the density of dis-
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as expected for a creep model of crystalline solids. The
two independent determinations are fully consistent and
hint at a dislocation-mediated melting of the hexagonal
columnar crystal under shear, in noticeable analogy with
theoretical predictions for FLL [4]. Our data, moreover,
suggest the occurrence of an intermediate hexatic phase
under shear.

The experimental system is a lyotropic hexagonal
phase consisting of infinitely long oil tubes immersed in
water. The samples are composed of a quaternary mixture
of sodium dodecylsulfate (SDS), pentanol, cyclohexane,
and brine with a NaCl concentration of 0:4M. We use a
composition in weight percent of 9:7% SDS, 24:1% brine,
61:5% cyclohexane, and 4:7% pentanol which yields, at
rest, a structure consisting of oil tubes of radius 15 nm,
coated with a surfactant monolayer and arranged on a
triangular array with a lattice parameter a0 � 33 nm [5].
Rheology experiments are performed in a Couette ge-
ometry with a stress-controlled Paar Physica UDS 200
rheometer. The flow curve, stress � vs shear rate _		, of a
soft hexagonal columnar crystal, has been described in
detail in Refs. [3,6]. At low shear rates ( _		 � _		c), the
system behaves as a power law shear-thinning material
while, at high shear rates, the stress varies affinely with
the shear rate. These two regimes correspond to two
stable branches of stationary states, for which data ob-
tained by imposing either � or _		 exactly superpose. The
transition from the lower branch to the higher branch
occurs through a stable hysteretic loop in a stress-
controlled experiment. To characterize the structure of
the material under flow, SAXS experiments under con-
trolled shear rate in Couette geometry are performed on
the ID-2 beam line at the ESRF, Grenoble, France [7].
The structure of the sample in the two stable branches has
been previously characterized [3]. Examples of the 2D
patterns obtained in both tangential and radial configu-
rations are given in Fig. 1. At low shear, the hexagonal
phase exhibits a polycrystalline texture with the tubes
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FIG. 2. Flow curve, stress versus shear rate, in the low shear
rate regime. Curves are labeled by temperature.
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FIG. 1. 2D diffraction patterns for a shear rate (left) _		 �
3:2 s�1 and (right) _		 � 1490 s�1 in tangential configuration
with incident beam parallel to the velocity V (top) and radial
configuration with incident beam parallel to the velocity gra-
dient (bottom). Scale bar is 0:2 nm�1.
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aligned along the flow is never reached. The angular
width of the arcs (Fig. 1, bottom) is used as a measure
of the alignment and indicates a sample mosaic spread,
�
, which decreases monotonically from 26� to 15� when
the shear rate increases from 1 to 100 s�1. By contrast, at
high shear rate, the long-range two-dimensional order of
the tubes melts, leading to a 2D liquid of tubes strongly
aligned along the flow (�
 ’ 8�). Melting transitions
under shear have been frequently observed for three-
dimensional colloidal crystals [8] and are generally
believed to be due to the existence of a periodic potential
in the direction of flow [9]. Similar arguments can cer-
tainly not be invoked for a 2D solid, for which a crystal-
line array of tubes perfectly aligned along the velocity
should flow at low viscosity. A novel approach is thus
needed.

To better understand the physical mechanism for the
shear melting, the behavior of the material under moder-
ate shear is analyzed within the framework of work hard-
ening of crystalline solids. The parallel between the
behavior under shear of liquid crystal phases and that of
metals has been proven successful in the case of lamellar
systems [10]. In the formal theory of work hardening, the
stress required to move a dislocation through a region
having a density of dislocation � can be derived from
general dimensional arguments [11]. With the assumption
that the applied stress, �, is relaxed by the dislocations, �
should depend solely on three parameters: the density of
dislocation �, the Burger vector of the dislocations b, and
the shear modulus of the material G. The pure number
�=G must therefore be a function of the pure number
b�1=2. On the other hand, the force which � exerts on a
unit length of a dislocation, the Peach and Koehler force,
is b�. This force is balanced by a resisting force arising
from the line tension, which is proportional to b2. In a
stationary state, b�� b2. Thus, � varies linearly with b
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and a relation between the stress and the density of dis-
location follows:

� � KGb�1=2; (1)

where K is a numerical factor. Equation (1) is well obeyed
by crystalline solids, with the prefactor K of the order of 2
for metals [12]. For hexagonal columnar phases, there are
three generic types of dislocation [13]: a screw disloca-
tion, a (longitudinal) edge dislocation with tangent t
parallel to the columns dislocation, and a (transverse)
edge dislocation with t perpendicular to the columns.
The transverse edge dislocation is the most costly in
energy because its creation requires the formation of
two end caps and is thus presumably very rare in soft
columnar crystals. By contrast, longitudinal edge and
screw dislocations do not require the creation of end
caps and are certainly more easily created; these dislo-
cations are expected to form loops with both longitudinal
edge and screw components, as also assumed in Ref. [14]
for FLL. For these two types of dislocations [14], the line
tension is proportional to b2. Thus, Eq. (1) should hold
and an increase of the density of dislocation with the
applied stress is predicted. Moreover, whenever disloca-
tion motion is the dominant plastic deformation mecha-
nism, one observes a constant shear rate regime usually
described by Orowan’s geometrical relation, _		 � �bv
[15], where v, the average velocity of the dislocations,
is proportional to the applied stress �: v � M�, with M a
mobility. The shear rate dependence of both the stress and
the density of dislocations can thus be extracted from the
combination of Orowan’s relation and Eq. (1). One obtains
� � ��bG2	=M
1=3 � _		1=3 and � � �bGM	�2=3 � _		2=3.
We are able to measure independently the shear rate
dependences of both � and �. As we shall see below,
we find �� _		2n and �� _		n with n � 1=3, in remarkable
agreement with the simple dimensional theory described
above.

Rheology measurements give directly the shear-
thinning behavior of the sample. As can be seen in
Fig. 2, in a large range of temperature, from 15 �C to
30 �C, and over more than 1 order of magnitude for _		,
018301-2
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FIG. 3. Shear rate dependence of the full width at half height
of the first diffraction peak of the sample. The solid line is the
best fit of the data (see text). Inset: First diffraction peak for a
sample at rest (squares), submitted to a shear rate _		 � 5:8 s�1

(circles) and _		 � 29 s�1 (triangles).
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FIG. 4. Shear rate dependence of the normalized transla-
tional correlation length, as measured from the broadening of
the first order Bragg peak. The two solid lines have slopes of
�1=3 and �0:64.
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we find �� _		n with n � 0:32� 0:03, which implies
�� _		0:64�0:06. The shear rate variation of the density of
dislocation can be confirmed by independent measure-
ments. Thanks to the Synchrotron high resolution, quan-
titative information on � can indeed be obtained from the
width of the diffraction peaks. The peaks are not resolu-
tion limited and the full width at half height (FWHH) of
the first order diffraction peak, �q, increases with _		,
while its position remains unchanged. Figure 3 shows
that the FWHH ranges from 10�2 nm�1 at rest up to
2:2� 10�2 nm�1 for _		 � 100 s�1. We note that this
curve is fully reversible and, in particular, the zero shear
value of �q is systematically recovered when the shear is
stopped. We find that the variation of �q can be very well
fit by the sum of a constant and a power law of the shear
rate: �q � �q0  g� _			, where the constant �q0 is related
to the size of the crystallites at rest. We obtain �q0 �
0:9� 10�2 nm�1 and g� _			 � B _		m, with B � 0:3�
10�2 nm�1 and m � 0:33� 0:06. Finite size effects can
account for the shear rate dependence broadening of the
diffraction peaks. The standard Laue-Scherrer relation
relates indeed the width of the Bragg peaks to �, a trans-
lational correlation length: g� _			 � 2�=�. In the case of a
crystalline solid, � can be identified as the average dis-
tance between dislocations [16] and thus � � ��2. From
the power law variation of g, one predicts the density of
dislocation � to scale as _		2m � _		0:66�0:08. Remarkably,
the same power law variation of the density of dislocation
with the shear rate with an exponent 2=3 is deduced from
the SAXS data and from the rheological results, thus
providing convincing support to our scenario for plastic
deformation.

The variation of N � �=a0, the translational correla-
tion length (normalized by the lattice parameter a0), with
the shear rate, below and above the melting transition, are
reported in Fig. 4. A continuous decrease of N with _		,
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from 80 to 4, is measured. Our results clearly show two
regimes characterized on a log-log plot by a change of
slope at the shear rate _		c. The slope is equal to �1=3
below _		c and crosses over a more abrupt variation, where
a slope of �0:64� 0:06 is measured. Although the cross-
over at the melting transition is smooth, it is associated
with a dramatic drop of viscosity and signs unambigu-
ously the melting transition. At 20 �C, the temperature at
which the SAXS experiments are performed, both the
rheology and the SAXS experiments show that the shear
melting occurs for _		c ’ 150 s�1. It is associated with a
critical normalized correlation length Nc � �c=a0 ’ 14
(Fig. 4), which is interestingly of the same order of
magnitude as the correlation length measured at the
melting of a 2D colloidal crystal [17]. Additionally, for
b � a0, which are presumably the most frequent disloca-
tions, the numerical prefactor K in Eq. (1) is equal to
��cNc	=G, where �c ’ 23 Pa (inset of Fig. 1) is the criti-
cal stress at the melting transition and G ’ 250 Pa is the
shear modulus previously measured [18]. One thus ob-
tains K ’ 1:3, in excellent agreement with the value
experimentally found for metals [12].

Both the shear-thinning regime and the SAXS scatter-
ing data can be quantitatively and consistently interpreted
as resulting from an increase of the density of disloca-
tions with the shear rate. We therefore propose the shear
melting be due to a proliferation of dislocations. Our out-
of-equilibrium results are in remarkable analogy with the
shear melting of FLL [4], theoretically addressed when
the shear is perpendicular to the flux lines. In our case,
however, the shear is oblique to the tubes; the nontrivial
coupling between the gradual alignment of the tubes and
the increase of the density of dislocation with the shear
remains an open issue. Our experimental results compare
also naturally with those for the well documented melting
of 2D solids [19]. However, because scattering experi-
ments do not provide direct imaging, no information
about the spatial distribution of the dislocations can be
accessed, but only their average density can be extracted
018301-3
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FIG. 5. (right panel) 2D diffraction pattern of a sample sub-
mitted to a shear rate _		 � 390 s�1. The velocity is perpen-
dicular to the scattering plane. (left panel) Azimuthal scan of
the 2D diffraction pattern. The intensity I is averaged over an
annulus of radius q0 � 0:215 nm�1 and width 0:05 nm�1 and is
corrected to take into account the curvature of the cell; once
corrected, a sixfold symmetry is recovered with all maxima of
roughly equal intensity.
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from the data. As opposed to 2D solids, where direct
imaging is possible [17,20], it is therefore delicate for
hexagonal columnar crystals to unambiguously charac-
terize the melting transition, and determine whether it is a
one-stage first order transition or a two-stage transition
with an intermediate line hexatic phase. Our data tend
nevertheless to support the latter scenario. Indeed, Fig. 5
shows the 2D pattern, obtained in tangential configura-
tion for _		 � 390 s�1, which is above the melting transi-
tion. The pronounced sixfold angular modulation
observed on this pattern is a signature of a line hexatic
phase. Line hexatic phases have been predicted [14,21]
and only very recently observed by scattering techniques
[22,23]. Interestingly, our experimental results also sug-
gest the existence under shear of an intermediate line
hexatic phase, between the columnar crystal and the
liquid phase.

In conclusion, we have shown that a mechanism of
proliferation of dislocations can qualitatively account
for the melting of a hexagonal columnar crystal under
shear, which presumably occurs through a two-step pro-
cess with an intermediate line hexatic phase. Our experi-
mental results compare well with the shear melting of
FLL and provide an original illustration of the deep
analogy between magnetic flux line lattices and columnar
liquid crystals. Recent developments in the simulations of
dislocation motions should render possible a numerical
test of our main findings and should provide decisive
information about the spatial organization of the dislo-
cations in a steady-state regime.

The ESRF is acknowledged for financial support and
provision of synchrotron beam time and V. Urban for
technical assistance during the SAXS experiments.
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