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We present two polarization-based protocols for quantum key distribution. The protocols encode key
bits in noiseless subspaces or subsystems and so can function over a quantum channel subjected to an
arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical
fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon
rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to
existing schemes for quantum key distribution over optical fibers without resorting to interferometry or
two-way quantum communication, thereby circumventing, respectively, the need for high precision

timing and the threat of Trojan horse attacks.
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Quantum key distribution (QKD), such as the BB84
protocol proposed by Bennett and Brassard in 1984,
allows two parties (Alice and Bob) to generate an arbi-
trarily long random secret key, provided that they ini-
tially share a short secret key and that they have access to
a quantum channel [1]. As opposed to classical key dis-
tribution, the secrecy of the generated key does not rely
on computational assumptions but simply on the laws of
physics: as long as quantum mechanics holds, the infor-
mation available to an eavesdropper (Eve) can be made
arbitrarily small.

Photons are obvious candidates for mediators of quan-
tum information since they are fast, cheap, and interact
weakly with the environment. Both free air and optical
fiber based QKD have been realized experimentally; see
[2,3] for reviews. Any experimental implementation of
QKD naturally has to deal with the issue of noise in the
quantum channel, which substantially complicates the
security of QKD, as Eve may attempt to disguise her
eavesdropping as noise from another source. Standard
security proofs deal with channel noise, including photon
loss, and show that Eve acquires essentially no informa-
tion provided the noise rate is not too high. Higher noise
rates mandate lower key generation rates, and once it
becomes too large, secure key generation is impossible.

Building a viable quantum cryptographic system there-
fore depends on ensuring that the noise rate is low. The
degree of freedom used to encode the information can be
the polarization of the photon, its phase, or some combi-
nation of both. Purely phase-based schemes have been
realized experimentally [4] but require complex inter-
ferometric setups, high precision timing, and stable low
temperatures. Interferometry becomes even more chal-
lenging with multiphoton states because of the difficulty
of keeping phase coherence between the photons. A
scheme which escapes some of these limitations using a
clever encoding of key bits was proposed recently [5].

Polarization-based schemes also come with a disad-
vantage as optical fibers rotate polarizations of transmit-

017901-1 0031-9007/04/92(1)/017901(4)$20.00

PACS numbers: 03.67.Pp, 03.67.Dd, 42.65.Lm

ted photons, and the degree of rotation fluctuates over
time. If left untreated, this would result in an unaccept-
ably high error rate. A number of proposals have been
made to handle this source of errors; we present a new
solution which is in some ways superior. Singlet states
&) = % (l01) — |10)), where {|0), |1)} is any basis of the
qubit Hilbert space, have the property that they are un-
changed under equal rotations on both qubits; this is the
defining property of a noiseless subspace. (If one’s qubits
are the polarization degrees of freedom of single photons,
as we assume here, then |0) and |1) can be taken to denote,
for instance, the vertical and horizontal polarization
states.) We present two protocols that take advantage of
this property to encode key bits in four- or three-photon
states. These states should be experimentally realizable
and form simple examples of a noiseless subspace or
subsystem, respectively (also called a decoherence-free
subspace and subsystem) [6—8].

Free-space QKD is largely immune to the problem of
polarization rotation: the coupling between the photons
and the molecules in the atmosphere can be absorbed
in a dielectric constant to very good approximation.
Unfortunately, the same cannot be said about optical fiber.
Rather, the dielectric constant acquires a spatial and
temporal dependence, yielding an overall time dependent
unitary transformation of the polarization state of a
single photon, U(r), as the net effect of the fiber. This
varies on the time scale of thermal and mechanical
fluctuations of the fiber, the shortest of which we refer
to as 7. If the time delay between the photons is small
compared to 7, the effect of this noise on the state of N
photons is well approximated by

py — UMDY py[UNTY, (D

where ¢ now denotes the time of transmission. This is
known as the unitary collective noise model [6].

There are several ways to deal with collective noise.
The most obvious way is to continuously estimate the
transformation U(¢) and systematically compensate for it.
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However, this requires an interruption of the transmission
and, if the fluctuations become too rapid, the communi-
cation channel becomes useless. A second possibility—a
phase-polarization hybrid which has been used success-
fully to realize QKD over 67 km [9]—uses the Faraday
orthoconjugation effect [10] to autocompensate the effect
of U(7). Roughly speaking, if the transformation on the
photon during its transmission from Bob to Alice is
described by U(z), it can be U(f)~! when the photon is
transmitted back from Alice to Bob, yielding no net
transformation overall. The quantum information can be
encoded by an extra phase transformation performed by
Alice before returning the photon to Bob. Obviously, this
technique works only if U(¢) is roughly constant through-
out the transmission of the photon; this sets an upper
limit of ¢y, to the distance over which QKD can be
implemented with this scheme. (However, with today’s
technology, photon loss is a much more serious limitation
to the distance over which QKD can be achieved.)

Although such two-way quantum communication can
eliminate collective noise, it allows for new attacks not
possible against BB84. Since Alice receives and emits
signals, it is possible for Eve to probe her laboratory—a
technique known as the Trojan horse attack. There are
many ways in which she can do this. She could add a weak
signal to the channel at a slightly different frequency and
recover some information about Alice’s phase transfor-
mation by subsequently filtering the output signal. Eve
could also try to entangle an ancilla system with the
signal before it enters Alice’s laboratory and perform a
joint measurement on the two after Alice has retransmit-
ted the signal. She could also intercept the signal, send a
different signal to Alice, and thereafter measure the out-
put to estimate the applied phase transformation, etc.
Technical solutions for some of these attacks have been
proposed. However, Eve has an enormous variety of at-
tacks available, and to prove true information-theoretic
security, one must assume that Eve has arbitrary techno-
logical power; e.g., she can outperform the best frequency
filtering available to Alice and Bob. Because of its inher-
ent use of two-way quantum communication, the protocol
is formally quite different from the standard BB84 pro-
tocol and proving its security may be quite difficult.
(Note, however, that QKD must make use of two-way
classical communication between Alice and Bob, and this
presents no particular barrier to security proofs. Indeed,
taking full advantage of two-way classical communica-
tion results in a protocol with substantially greater toler-
ance for noise [11].)

The schemes we propose here are purely polarization
based and cope with collective noise without resorting to
two-way quantum communication. In the first protocol,
the quantum information is encoded in a noiseless sub-
space, while in the second protocol it is encoded on a
noiseless subsystem. [Such encodings also obviate the
need for Alice and Bob to share a reference frame (such
as, for instance, a known relative alignment of their
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linear polarizers), as has been pointed out in the context
of quantum communication in Ref. [12].] A noiseless
subspace is invariant under the action of the collective
noise operation (here U®V). Any state within it is there-
fore unaffected (modulo a global unphysical phase) by the
noise. When such a subspace does not exist, it may still be
possible to find a set of density operators which are
invariant under the effect of noise. These density opera-
tors instead form a noiseless subsystem on which pure
states can be encoded.

The protocols we present use singlet states as building
blocks. Information is encoded in the pairing of the
photons; the various ways of organizing three or more
photons into pairs provide us with different states with
which to encode information. The photons must be dis-
tinguishable if different pairings are to correspond to
different physical states: they need to be labeled in
some way. Physically, this means that the photons must
differ with respect to some degree of freedom. Here the
photons are assumed to differ in their time of arrival;
they are spatially separated in the optical fiber. Further-
more, each bit is encoded on multiphoton states which
must also be distinguished even in the presence of noise.
Therefore, the multiplets of photons must be spatially
separated by a distance greater than the separation be-
tween individual photons inside a multiplet. The fluctua-
tion time 7y, needs to be large only with respect to the
difference in the arrival times of the first and the last
photon of a multiplet.

It is crucial that information about the pairing resides
only in the polarization state of the photon. For example,
variations in the frequency of the photons can reveal
pairing information: the frequencies of the two photons
in each singlet must add up to the frequency of the pump,
but the frequencies of photons in different singlets need
not match. By measuring the photons’ energy, Eve can
learn about how they are paired without affecting their
polarization. This energy signature can be eliminated by
filtering the photons before they leave Alice’s laboratory.
Indeed, if the bandwidth of the filter is smaller than the
bandwidth of the pump laser, almost no information about
the pairing can be recovered by Eve. Frequency filtering
also decreases decoherence due to polarization mode
dispersion in the fiber [2]. Similarly, we must wash out
the phase relation between photon pairs. That is, the
information must be encoded only on the relative order
of the photons, not in their absolute time of arrival. This
can be achieved by choosing the time delay between the
photons in each multiplet at random from a certain range.

We now present our two protocols: the first one encodes
the quantum information on four-photon states, while the
second only requires three-photon states. We do not prove
their security here, but rather point only to their similar-
ities with a protocol proposed by Bennett in 1992 (B92)
[13] which is known to be secure [14]. We hope to provide
a complete security proof in a later paper. The first pro-
tocol requires the definition of three normalized states of
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a photon quartet:

:

1)

|’¢’2> =

All these states correspond to pairs of single states: in
li41), photons one and two form a singlet state and so do
photons three and four. The two other states correspond to
the two other ways of pairing four photons as illustrated
by the diagrams. The states are invariant under uniform
rotations, so, in any basis, these states can be decomposed
into the superpositions noted above, where |a) =
(10101) + |1010))/+/2, |b) = (|0110) + |1001))/+/2, and
ey = (10011) + [1100))/+/2.

It is straightforward to verify that [{¢; | ¢;)| = 1/2 for
i # j.Itis therefore impossible to reliably distinguish any
pair of these states, but it is possible to make a measure-
ment that provides some information. Measuring the
polarization of all four photons allows Bob to distinguish
states |a), |b), and |c). Therefore, if Alice restricts her
transmission to one of a pair of states, Bob can tell which
of the two states she sent 50% of the time. For example,
suppose Alice transmits one of the pair {¢, ¢,}. When
Bob measures either “0101” or ‘“1010,” he can conclude
that she sent |¢/,). When he gets either “1100” or “0011,”
he concludes she sent |¢,). Given any other outcome, Bob
cannot deduce with certainty which state she sent. We
now present the protocol.

Protocol 1.—Included are the following steps:

(1) Alice chooses a random (4 + §)n bit string X and a
random (4 + &)n trit string B.

(2) Alice encodes each bit {0, 1} of X according to
{1, ¥} if the corresponding trit of B is 0; {¢,, ¥} if B
is 1; or {if3, ¢, } if B is 2.

(3) Alice sends the (4 + 8)n quartets of photons to Bob.

(4) Bob receives the photons and announces this fact.
For each of the (4 + 8)n photon quartets, he randomly
chooses between the rectilinear or the diagonal polariza-
tion basis. He then measures each of the four photons of
each quartet according to this choice of basis.

(5) Alice announces B. Given this information, and
using the procedure described above, Bob can determine,
for each quartet, whether or not his measurement was
conclusive, and if conclusive, the value of the encoded bit.

(6) Alice and Bob discard all bits where Bob’s mea-
surement was inconclusive. With high probability, there
are at least 2n bits left, which they keep. Otherwise, they
abort the protocol.

(7) Alice selects a random subset of n bits and tells Bob
which bits were selected.

(8) Alice and Bob announce and compare the value of
the n selected bits to estimate Eve’s interference; if more
than an acceptable number of errors are found, they abort
the protocol.
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(9) Alice and Bob perform information reconciliation
and privacy amplification on the remaining n bits.

In step (4) the choice of basis does not affect the
measurement outcome of Bob: this is, in fact, the main
property of the encoding. Nevertheless, it is crucial that
Eve does not know in which basis the measurement is
performed. If she knew, she could measure in the same
basis as Bob and would know everything Bob knew. Since
she does not know, she will frequently measure in a
different basis than Bob and therefore introduce errors
that will reveal her presence.

As the protocol is written, in step (6) Alice and Bob
discard any bits for which Bob’s measurement is incon-
clusive. Nevertheless, an inconclusive result could still be
useful. Indeed, any measurement result whose weight
differs from two, e.g., “1011,” indicates that Eve has
tampered with the communication. This provides Alice
and Bob with some extra data to estimate Eve’s interfer-
ence: only allowed code words should be observed by Bob.

If steps (4) and (5) are inverted, which could only
provide Eve with more information, we get a protocol
quite similar to B92. Alice encodes the bit in two pre-
selected nonorthogonal states which she sends down the
quantum channel. Bob then performs a von Neumann
measurement chosen at random from a certain set: this
is also required in B92. Nevertheless, there are certain
differences in the nature of these measurements which
must be studied carefully to arrive at a complete security
proof. We are currently working on these issues. The B92
protocol is not secure if the transmission rate is below
1/2. Eve can replace the noisy channel by a perfect
channel and measure Alice’s output in such a way that
she achieves a conclusive discrimination with probability
1/2, in which case she knows the state and can send it to
Bob. In the case of an inconclusive result, she does not
send anything. From Alice and Bob’s point of view, this
would be indistinguishable from the natural noise. By
delaying the announcement of B, our proposal escapes
this limitation.

The simplicity of the measurement—single photon
polarization—is a clear advantage of this protocol.
(The possibility of discriminating between states that
are invariant under collective noise, without having re-
course to collective measurements, has also been noted
in Ref. [15].) Furthermore, proof of principle for photon-
based noiseless subspace has been realized [16] and the
specific states required by our protocols have already
been produced by several groups [17,18]. Two singlet
states can be produced in a short time interval via para-
metric down-conversion by sending a femtosecond pump
laser pulse back and forth across a crystal (using a
mirror). Since the photons are emitted in different
directions, the EPR pairs can be clearly distinguished.
The achieved production rate are relative low (a few
hertz), but this technique is still in its infancy. Optical
delays and switches can be used to create any of the three
states of Eq. (2).
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At first glance, it appears there are two copies of the
information in this encoding. For instance, if Alice an-
nounces that the bit is encoded as {/;, i, }, the value of the
first two measurement outcomes is enough to sometimes
deduce the value of the encoded bit: it is necessarily 1 if
the outcomes are the same. The same holds for the mea-
surement outcomes on the last two photons. Nevertheless,
this redundancy is intrinsic to our quantum encoding
scheme and does not provide Eve with any extra informa-
tion. The second protocol we present exploits this redun-
dancy to reduce the size of the encoding.

Protocol 2.—This is a slight modification of Protocol 1.
In step (3), instead of sending the entire state to Bob,
Alice randomly discards one photon from each quartet
and sends the remaining three. In step (5), Alice should
also announce which photon she has discarded. Therefore,
the three pure states of Eq. (2) are replaced by the three
mixed states

r1 = J.—J. O
pr= & o o (3)
pP3= 0 £ l

where the “O” denotes the maximally mixed state. These
states are obviously invariant under collective noise.
Furthermore, any pair can be distinguished with a finite
probability, just as with the states in Protocol 1. This
follows from the fact that they constitute nonorthogonal
mixed states with nonidentical supports and the fact that
one can achieve probabilistic error-free discrimination of
such mixed states [19]. For example, suppose that Alice
has announced that the bit is encoded as {p,, p,}. Clearly,
any measurement outcome of Bob’s where photon 1 and
photon 2 come out parallel rules out the state p,. Here,
the two outcomes “000” and “111” never occur in the
absence of eavesdropping; they indicate that Eve has
tampered with the communication.

These states do not form noiseless subspaces, because
any particular pure state in the decomposition of the
density matrices p, p,, or p3 does not remain invariant
under collective noise. Instead, it is transformed into
another state in the decomposition of the same density
matrix. For instance, |¥ ™) ® |0), in the decomposition of
p1, becomes under collective bit-flip |[¥~) ® |1). The in-
dividual states are not noiseless, as is the space spanned
by them; they therefore form a noiseless subsystem, and
the density matrices are invariant under collective noise.

This second protocol shares many similarities with
Protocol 1. It is our hope that essentially the same proof
will be able to show that both protocols are secure. In
practice, Alice does not have to create two photon pairs
and discard one photon; she could simply create one pair
and one additional photon in the maximally mixed state.
This should greatly increase the transmission rate since
pair creation schemes have relatively low efficiency.
Furthermore, Protocol 2, based on trios of photons in-
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stead of quartets, should suffer less from photon loss and
hence be realizable over greater distances.

On a speculative note, perhaps the two protocols could
be hybridized into a more robust protocol. Alice could
always encode her information on photon quartets. Bob
could then divide the photon multiplets into two sets
depending on how many photons from the quartet ac-
tually made it to the destination: set 1 when all four
photons made it and set 2 when only three photons were
detected. The outputs from set 1 could then be used to
complete Protocol 1, while those of the second set would
be used as in Protocol 2. However, this suggestion pro-
vides Eve with a wide variety of attacks unavailable in our
two protocols, and its security must therefore be studied
independently.
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