
P H Y S I C A L R E V I E W L E T T E R S week ending
9 JANUARY 2004VOLUME 92, NUMBER 1
Rigorous Analysis of Singularities and Absence of Analytic Continuation
at First-Order Phase-Transition Points in Lattice-Spin Models

Sacha Friedli
Institute of Theoretical Physics, EPFL, 1015 Lausanne, Switzerland
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We report about two new rigorous results on the nonanalytic properties of thermodynamic potentials
at first-order phase transition. For lattice models (d � 2) with arbitrary finite state space, finite-range
interactions which have two ground states, we prove that the pressure has no analytic continuation at the
first-order phase-transition point, under the only further assumptions that the Peierls condition is
satisfied for the ground states and that the temperature is sufficiently low. For Ising models with Kac
potentials J��x� � �d’��x�, where 0< �< 1 is a small scaling parameter, and ’ a fixed finite-range
potential, we relate the nonanalytic behavior of the pressure at the transition point to the range of
interaction, which equals ��1. Our analysis exhibits a crossover between the nonanalytic behavior of
finite-range models (� > 0) and analyticity in the mean field limit (� & 0).
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Weiss model. In this approach, the interaction is replaced
by an infinite range and infinitely weak potential. The

temperature, the pressure of the Ising model in a mag-
netic field �, p � p���, is infinitely differentiable at
I. INTRODUCTION

The first theory of condensation originated with the
celebrated equation of state of van der Waals [1]:�

p�
a

v2

�
�v� b� � RT: (1)

When complemented with the Maxwell construction
(or ‘‘equal area rule’’), Eq. (1) leads to isotherms describ-
ing general characteristics of the liquid-vapor equilib-
rium, including the existence of a critical temperature.
The isotherms obtained with the van der Waals–Maxwell
theory have a very simple analytic structure: they are
analytic in a pure phase and have analytic continuations
along the liquid and gas branches, through the transi-
tion points. These analytic continuations, which were
originally interpreted as describing the pressure of meta-
stable states, are provided by the original isotherm given
in Eq. (1).

The theoretical question of knowing whether the re-
sults predicted by the van der Waals theory can be derived
from first principles of statistical mechanics remained a
long-standing problem during a large part of the twenti-
eth century. The theories of Mayer [2] and Yang and Lee
[3] were decisive contributions to the theory of phase
transitions but did not give an answer concerning the
delicate question of the analytic continuation at transition
points. With regard to this latter property, two scenarios
were discussed in the 1950s and 1960s.

The first one was essentially based on the mean field (or
Bragg-Williams) approximation [4]. In the Ising setup
mean field theory is usually described as the Curie-
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central characteristic of the effective model obtained
after this approximation is that the spatial positions of
the particles do not play any role. As a consequence, an
exact computation of the partition function leads to the
same behavior as in the van der Waals–Maxwell theory: at
low temperature, thermodynamic potentials are analytic
in a pure phase and have analytic continuation at tran-
sition points. Katsura [5] conjectured that this scenario
holds also for short range models, such as the Ising model
(see also the discussion below).

The second argument, totally different in spirit, origi-
nated with the so-called ‘‘droplet mechanism’’ of the
condensation phenomenon, proposed by Andreev [6],
Fisher [7] and Langer [8]. This mechanism, as opposed
to the mean field approximation, predicts that the finite-
ness of the range of interaction plays a crucial role in the
analytic properties of the thermodynamic potentials.
Namely, when the range of interaction is finite, droplets
of any size are stable at the condensation point, and
although the probability of occurrence of large droplets
is very small, it is their stability that yields a contribution
of the order k!d=�d�1� to the kth derivative of the pressure,
which prevents an analytic continuation. Kunz and
Souillard were led to the same conclusions after having
studied a similar model, related to percolation [9].

Subsequent papers on the subject, in which no definite
answer was given, include [10–12]. More recent studies
can also be found in [13–15].
II. RIGOROUS RESULTS

Isakov (1984) [16]. In dimension d � 2, at low enough
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FIG. 1. The free energy in the van der Waals limit.
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� � 0�, but has no analytic continuation from f� < 0g to
f� > 0g across � � 0, or vice versa.

Isakov proved that the Taylor series of the pressure at
� � 0� have zero convergence radius, by proving that

p�k��0�� � Ckk!d=�d�1�: (2)

In a second paper [17], Isakov tried to extend this result to
general two phase lattice models. He had, however, to
introduce hypotheses that are not easy to verify in con-
crete models. Weaker but conceptually related results, on
the absence of thermodynamic ‘‘metastable states,’’ have
been proved by Lanford and Ruelle [18]. Nowadays meta-
stability is treated as a dynamical phenomenon. In this
respect we mention an important paper by Schonmann
and Shlosman [19]. We now present our results.

Two phase models.—Consider a lattice model with
finite state space at each site of Zd, d � 2. Let H0 be a
Hamiltonian with finite-range periodic interaction, hav-
ing two periodic ground states  1;  2.We assume further-
more that the Peierls condition is satisfied [20]. Let V be a
periodic potential with finite-range interaction, so that
the perturbed Hamiltonian

H� � H0 � �V (3)

splits the degeneracy of H0. That is, H� has a single
ground state  2 when � < 0 and a single ground state
 1 when � > 0. Denote by p � p��� the pressure of the
model (at inverse temperature �). Let � > 0. The general
theory of Pirogov and Sinai [21] guarantees that if � is
large enough, then there exists ����� 2 ���;��� such
that the pressure has a first-order phase transition at
�����. Our first result [22] is the following:
Theorem 1. There exists �0 > 0 such that for all
� � �0, the pressure is analytic in � on ���; ������
and ������;���, but has no analytic continuation from
���; ������ to ������;��� across ����� or vice versa.

Kac potentials and the van der Waals limit.—Consider
an Ising ferromagnet, with a spin �i 2 f�1;�1g at each
site of Zd, d � 2. Let ’:Rd ! R�, supported by the cube
��1;�1�d, such that

Z
’�x�dx � 1: (4)

Let 0< �< 1 be a small scaling parameter and consider
the Kac potential J��x� � �d’��x�, together with the
Hamiltonian

H � �
1

2

X
i�j

J��i� j��i�j: (5)

Let f� � f��m� denote the free energy of this model,
with fixed magnetization m 2 ��1;�1�. The theorem of
Lebowitz and Penrose [23] gives a closed form to the
free energy in the van der Waals limit � & 0 (some-
times called the Kac or mean field limit) and justifies
the Maxwell construction. Let f0�m� � lim�&0f��m�.
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Then (see Fig. 1)

f0�m� � convex envelope of
�
�
1

2
m2 �

1

�
I�m�

�
; (6)

where I�m� equals

I�m� � �
1�m

2
ln
1�m

2
�

1�m
2

ln
1�m

2
: (7)

When � > 1, f0�m� has a plateau ��m����;�m�����,
where m���� is the positive solution of the mean field
equation m � tanh��m�. As a consequence of the
Lebowitz-Penrose theorem, all the analytic properties
of the free energy are known explicitly after the
van der Waals limit: f0 is analytic on the branches
��1;�m����� and ��m����;�1� and has analytic con-
tinuation along the paths m % �m����, m & �m����.
The analytic continuation, which is unique, is given by
the mean field free energy � 1

2m
2 � 1

� I�m�. After the
van der Waals limit, the scenario is thus the same as in
the van der Waals–Maxwell theory.

Consider the specific choice ’�x� � 2�d1�x�, where
1��� is the indicator of the cube: 1�x� � 1 if x 2
��1;�1�d, 0 otherwise. For a fixed 0< �< 1, J� is finite
range and Theorem 1 can be used, but only for tempera-
tures � � �0���, with lim�&0�0��� � �1. Our result
[24] is given hereafter. It holds at low temperature, uni-
formly in the range of interaction.
Theorem 2. There exists�0, independent of �, such that
for all � � �0 and all 0< �< 1, the free energy f� is
analytic on �� 1;�m���;��� and ��m���;��;�1� but
has no analytic continuation along the real paths
m % �m���;��, m & �m���;��.
As opposed to the mean field behavior, finite-range inter-
actions, even of very long range, imply an absence of
analytic continuation at transition points. A crucial in-
gredient for the proof of Theorem 2 is the use of the
coarse-graining technique of Bovier and Zahradnı́k [25].

We study the pressure p� � p����, in which the con-
straint on the magnetization is replaced by a magnetic
field �. The pressure and free energy are related by a
Legendre transform:

f��m� � sup
�
��m� p�����: (8)

By the theorem of Yang and Lee, p� is analytic in � on
f� < 0g and f� > 0g. Our main result is a precise charac-
terization of the properties of p� along the path � & 0
(using symmetry, we need only consider fields � > 0).
Theorem 3. There exists�0, independent of �, such that
for all � � �0 and all � > 0, all the limits p�k�

� �0�� �
lim�&0p

�k�
� ��� exist, but the pressure has no analytic
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continuation from f� > 0g to f� < 0g across � � 0. More
precisely, there exists integers k1���, k2���, k1��� <
k2���, with lim�&0ki��� � �1, such that

jp�k�
� �0��j � Ck1k! when k � k1���; (9)

jp�k�
� �0��j � Ck2k!

d=�d�1� when k � k2���: (10)

The constant C1 is independent of � and k, C2 �
C2��;�� > 0, and k1��� � ��d.
That is, the large order derivatives reveal the nonanalytic
feature of the singularity, although a signature of the
mean field (analytic) behavior can be detected in the
low order derivatives. We have illustrated this crossover
in Fig. 2.

III. METHOD

The pressure has a singularity only in the thermody-
namic limit. However, we study the system in large finite
volumes and obtain bounds on the derivatives that are
uniform in the volume. At the end we prove that it is
possible to interchange the operations of taking the de-
rivative and the thermodynamic limit.

The method used to obtain lower bounds on the de-
rivatives of the pressure at finite volume is inspired by the
technique of Isakov. Let � be a finite cube in Zd with a
fixed boundary condition and Z��� be the corresponding
partition function. One enumerates all possible contours
[26] inside �: �1;�2; . . . �n in such a way that V��i� �
V��j� when i � j [V��i� denotes the volume of the inte-
rior of the contour �i]. One then defines the restricted
partition functions Zi���, i � 0; . . . ; n. By definition,
Z0��� is the partition function computed for a system
containing no contours, and Zi��� is the partition func-
tion computed for a system containing no contour �j with
j > i. Obviously,

Z��� � Z0���
Yn
i�1

Zi���

Zi�1���
: (11)

For the proof of Theorem 1, there is only the ground state
configuration contributing to Z0���. For the proof of
Theorem 2, Z0��� is the partition function of a restricted
phase, describing small local fluctuations of the ground
state. Let

u���i� � log
Zi���

Zi�1���
: (12)

Notice that we have the fundamental relation

Zi��� � Zi�1��� � Z�
i�1���; (13)
pγ
(k) (0±) ~ k! pγ

(k) (0±) ~ k!
d

d−1

FIG. 2. The crossover in the derivatives of the pressure.
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where the contour �i appears in each configuration con-
tributing to Z�

i�1���. A precise analysis of the phase
diagram shows that � � u���i���� is analytic in a disk
Ui centered at � � ����� (respectively, � � 0 for the
Kac ferromagnet), with a radius of order V��i��1=d. In the
domain Ui, u���i� can be represented as follows:

u���i� � ln

�
1�

Z�
i�1���

Zi�1���

�
� ln�1� eg���i��: (14)

The dependence of g���i� on the volume � is weak.
Moreover, g���i� can be decomposed into a surface
term and a volume term, as in the droplet model. Then,
by choosing a path of integration C � Ui,

ui����k����� �
k!
2&i

Z
C

ui������

��� ���k�1
d�: (15)

The observation of Isakov is that u���i� ’ eg���i� on
Ui, and that for a given large enough k, one can esti-
mate precisely the Cauchy integral (15), for all large
enough contours, by a stationary phase method, choos-
ing suitably the path of integration C. In this way one
gets a contribution to the kth derivative of the pressure
of order Akk!d=�d�1�. For the other contours, only an
upper bound can be obtained on the integral, of the
same order Bkk!d=�d�1�. The crucial point is therefore to
have large enough neighborhoods Ui, in order to show
that A > B.

IV. DISCUSSION

In the framework of Kac potentials, the role played
by the range of interaction in the analyticity properties
of the pressure can be clarified by the following discus-
sion. When � � 0, our analysis allows one to decompose
the pressure in two distinct parts: p� � r� � q�. On
one hand, r� is constructed with the partition function
Z0��� of Eq. (11) and describes a homogeneous phase
with positive magnetization, containing no droplets of
the � phase. When � & 0, r� converges to the pressure of
the mean field model. On the other hand, q� contains
the contributions from the droplets of the � phase,
which are all stable at � � 0, and q� � O�e���

�d
�.

Namely, the main contribution to q� comes from the
smallest droplets, which live on a coarse-grained lattice
whose cells have side length ��1. Then, the pressure r�
behaves analytically at � � 0, i.e., r��k��0�� � k! for all k,
but q� is responsible for the absence of analytic continu-
ation at � � 0, since q��k��0�� � k!d=�d�1� for large
enough k. The combination of these two behaviors leads
to a crossover in the derivatives, as was shown in
Theorem 3.

Our results also have an important consequence re-
garding the theory of condensation initiated by Mayer [2].
In this theory, the pressure of a nonideal gas is described,
near z � 0 (z is the fugacity), by a convergent Taylor
015702-3
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expansion, given by the Mayer series:

�p�z� �
X
l�1

blzl �bl are the cluster coefficients�:

(16)

The condensation point is defined to be the first singular-
ity, say z�M, encountered when Eq. (16) is continued ana-
lytically along the positive real line z > 0. It was
suggested [4] that this method could actually lead to a
wrong determination of the condensation point: the ana-
lytic continuation of the Mayer series might not ‘‘see’’ the
real transition point z�c, situated somewhere between 0
and z�M: 0< z�c < z�M. This is indeed the case in the mean
field approximation: the system does not see the conden-
sation point, since there are no droplets of the liquid
phase inside the gaseous phase. We saw that if one sup-
presses the condensation mechanism by retaining, in
p� � r� � q�, only the term r�, then there is an analytic
continuation of the pressure. Our analysis shows that the
method initiated by Mayer for determining the conden-
sation point gives the correct result for a large class of
lattice gas models.

To conclude, we mention that the problem of knowing
whether the pressure can be continued analytically
around the singularity, in the complex plane, remains
open. It is not clear, in this case, whether the droplet
models can be used as a guiding mechanism, even to give
a heuristic description [27].
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