
P H Y S I C A L R E V I E W L E T T E R S week ending
9 JANUARY 2004VOLUME 92, NUMBER 1
Low-Temperature Nucleation in a Kinetic Ising Model with Soft Stochastic Dynamics
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We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods,
confirming the general result for the average metastable lifetime, h�i � A exp���� (� � 1=kBT) [E.
Jordão Neves and R. H. Schonmann, Commun. Math. Phys. 137, 209 (1991)]. Contrary to common
belief, we find that both A and � depend significantly on the stochastic dynamic. In particular, for a
‘‘soft’’ dynamic, in which the effects of the interactions and the applied field factorize in the transition
rates, � does not simply equal the energy barrier against nucleation, as it does for the standard Glauber
dynamic, which does not have this factorization property.
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stable state [13,14], independent of the specific stochastic
dynamic. In this Letter we show that this is not always so.

change in interaction energy, �EJ, and another that de-
pends only on the change in the field energy, �EH. Such
Nucleation is fundamentally important in disciplines
ranging from biochemistry [1] to earth sciences [2],
astrophysics [3], and cosmology [4], and it has been
studied by kinetic Monte Carlo (MC) simulations in
electrochemistry [5], materials science [6], magnetism
[7], and atmospheric science [8], to mention just a few.
However, many questions in nucleation theory are still
unresolved, and recently there has been much interest in
kinetic Ising systems as models for nucleation. In particu-
lar, much work has been done on their dynamical behav-
ior at very low temperatures [9–14], where it is influenced
by lattice discreteness. It is then possible to calculate
exactly both the shape of the critical nucleus (the
saddle-point configuration) and the most probable path
during a nucleation event. In a typical numerical experi-
ment, the system is prepared in a metastable state with all
spins positive in a negative applied field. During each MC
step (MCS), a randomly chosen spin is flipped with a
configuration-dependent transition rate W that satisfies
detailed balance, so that it will drive the system to
thermodynamic equilibrium. The metastable lifetime is
measured as the average number of MCS until the mag-
netization reaches zero. In the regime of single-droplet
decay studied here, the lifetime measured in MCS is
independent of the system size [9,11,15]. In the low-
temperature limit the lifetime has been rigorously shown
to be [9]

h�i � Ae��: (1)

Here the only dependence on the temperature T is through
� � 1=kBT, where kB is Boltzmann’s constant (hereafter
set equal to one). It is often assumed that � equals the
energy difference between the saddle point and the meta-
0031-9007=04=92(1)=015701(4)$20.00 
In particular, we describe two dynamics that both obey
detailed balance but have different values of � and A for
all values of the applied field, despite having the same
saddle-point configuration.

At sufficiently low T, the saddle point was shown in
Ref. [9] to be an ‘� �‘� 1� rectangle of overturned spins
with a ‘‘knob’’ of one overturned spin on one of its long
sides. The critical length ‘ � b2J=jHjc � 1 for all jHj 2
�0; 4�, where bxc is the integer part of x. Here, J > 0 is the
nearest-neighbor interaction constant of the Ising model,
which will henceforth be set to unity. The critical length
thus changes discontinuously at values of jHj such that
2=jHj is an integer.

The square-lattice S � 1=2 Ising ferromagnet with
unit interaction is defined by the Hamiltonian H �
�
P

h�;�i���� �H
P
���, where the Ising spins �� �

1, H is the applied field,
P

h�;�i runs over all nearest-
neighbor bonds on a square lattice, and

P
� runs over all

lattice sites.When this system evolves under a continuous-
time Glauber dynamic with spin-flip rate [16]

WG � �1� exp���E���1; (2)

where �E is the energy change that would result from the
flip, � in Eq. (1) is given by [9]

�hard � 8‘� 2jHj�‘2 � ‘� 1�; (3)

and from Ref. [12] A � Ahard � 3=�8�‘� 1�� for
all jHj< 2. (See explanation of the subscript ‘‘hard’’
below.) The interpretation of �hard is indeed the energy
difference between the saddle point and the metastable
state.

A characteristic feature of the Glauber dynamic is that
it does not factorize into one part that depends only on the
2004 The American Physical Society 015701-1
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transition rates are known as hard [17]. Dynamics that do
factorize this way are called ‘‘soft.’’ An example is the
soft Glauber dynamic [18],

WSG � �1� exp���EJ��
�1 �1� exp���EH��

�1: (4)

In studies of field-driven Ising and solid-on-solid in-
terfaces [18,19] it was recently shown that soft dynamics
yield significantly different microscopic interface struc-
tures and mobilities than hard dynamics. Here we show
that also the low-temperature nucleation properties with
the soft Glauber dynamic differ significantly from those
with the hard Glauber dynamic. In particular, � is not
simply the energy difference between the saddle point
and the metastable state, and the prefactor A is also
different.

We obtain our results in three different ways. First, we
calculate analytically by hand the first-passage time from
the metastable state to an absorbing state just beyond the
saddle point in an approximation that the path in configu-
ration space corresponds to a simple one-step Markov
process [20]. Second, we perform computer-aided ana-
lytical calculations using the technique of absorbing
Markov chains (AMC) [10,21], allowing for multiple
branching paths and ‘‘blind alleys.’’ Third, we perform
simulations using the MC simulation with AMC
(MCAMC) technique [10,22]. The first method provides
the clearest physical insight, and for noninteger values of
2=jHj the results are fully confirmed by the other two.

The one-step Markov chain for 1< jHj< 2 (‘ � 2)
corresponds to the configurations labeled i � 0; . . . ; 4 in
Fig. 1. The label i gives the number of overturned spins,
such that the starting configuration has i � 0, and the
saddle point has i � i� � 3. In general the absorbing state
is labeled I � i� � 1. The mean time spent in state i is hi.
The rate at which the cluster grows from i to i� 1 over-
turned spins is gi, and the rate with which it shrinks from
i to i� 1 is si. These quantities satisfy the relation
[20,23,24]
1  p= s 6

g 1 24p= 

2= s  2p 7

E = 1 8 − 2|H|

g 2 24p= 

3= s  2p 7

E = 2 12  − 4 | H|

3  p= g 3

E = 3 16 − 6|H|

E = 4 16  − 8 | H|
g 0 1Np= 

0E = 0

0 1 2 3 4

FIG. 1. The states in the one-step Markov chain of clusters of
i � 0; . . . ; 4 overturned spins, used to calculate the metastable
lifetime h�i analytically by hand. The right-pointing arrows
give the growth rates gi�1, and the left-pointing arrows give the
shrinkage rates si for i � 1, 2, and 3. The energies Ei (relative
to the metastable state, i � 0) are given at the top of the figure
for even i and at the bottom for odd i.
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hi�1 � �sihi � N�=gi�1 (5)

with boundary conditions sI � s0 � 0. The number N of
sites in the system represents the total probability current
through the Markov chain [20]. From Eq. (5) we obtain hi
recursively as hI�1 � N=gI�1 and

hi �
N
gi

�
XI�1�i

k�1

N
gi�k

Yk
j�1

�
si�j
gi�j�1

�
(6)

for 0 � i � I � 2. Assuming that I > i� and the growth
time for the supercritical droplet is negligible compared
with the nucleation time [9,18,19], the lifetime h�i is the
mean first-passage time to I, h�i � h�Ii �

P
I�1
i�0 hi.

Grouping the terms according to the ‘‘unpaired’’ factors
N=gi�k in Eq. (6) then yields

h�Ii �
N
g0

�
XI�1

l�1

N
gl

�
1�

Xl
k�1

Yk�1

j�0

sl�j
gl�j�1

�
: (7)

This result is general for any one-step Markov chain with
absorption at I, regardless of the values of gi and si [20].
However, for the Ising model the transition rates are
related by detailed balance as �si=n

s
i �=�gi�1=n

g
i�1� �

e��Ei�Ei�1�, where Ei is the energy of state i. The degener-
acy factors nsi and ngi�1 are the numbers of lattice sites at
which a single spin-flip can shrink the cluster from i to
i� 1 and analogously for growth from i� 1 to i, respec-
tively. As a result, Eq. (7) becomes

h�Ii �
N
g0

�
XI�1

l�1

N
gl

�
1�

Xl
k�1

e��El�El�k�
Yk�1

j�0

nsl�j
ngl�j�1

�
: (8)

In the limit �! 1 Eq. (8) is dominated by the term or
terms with the largest exponential factor. Their selection,
which determines � and A, is described below, after we
next find the spin-flip rates in the different dynamics.

For the square-lattice Ising system, the spins fall into
ten classes [22], determined by the spin value� (� for the
metastable direction and � for the stable direction) and
the number N� of its nearest neighbors that point in the
metastable direction. The low-temperature limits of the
rates pm for flipping a spin in class m [Eqs. (2) and (4)],
are shown in Table I.

Figure 1 shows a one-step Markov chain with I � 4.
For 1< jHj< 2 the saddle-point configuration (i � i�) is
the L-shaped cluster with ‘ � 2 (i� � 3). Among the
dominant terms in Eq. (8) is always the one with k � l �
i� � 1. For 0< jHj< 2, growth from i� � 1 to i� always
involves adding a knob to one of the long sides of an ‘�
�‘� 1� rectangle, such that gi��1 � 2‘p2. From Table I
we see that psoft

2 � e��2jHjphard
2 . For 2< jHj< 4, the

saddle point is a single overturned spin (‘ � 1), so i� �
1 and gi��1 � g0 � Np1. Again, the difference between
� for the two dynamics is determined by the fact that
psoft
1 � e��2jHjphard

1 . This yields our main result:
015701-2



TABLE I. Rates of flipping a spin in class m, pm, in the limit �! 1. Here � � � ( � ) corresponds to a spin in the metastable
(stable) direction, and N� is the number of its nearest-neighbor spins in the metastable direction. The analytic form of pm for the
soft dynamic does not change with jHj.

m � N� psoft
m phard

m m � N� psoft
m phard

m

1 + 4 e��8 e���8�2jHj� for jHj< 4 6 � 4 e��2jHj 1 for jHj< 4
1=2 for jHj � 4 1=2 for jHj � 4
1 for jHj > 4 e��8�2jHj� for jHj > 4

2 + 3 e��4 e���4�2jHj� for jHj< 2 7 � 3 e��2jHj 1 for jHj< 2
1=2 for jHj � 2 1=2 for jHj � 2
1 for jHj > 2 e��4�2jHj� for jHj > 2

3 + 2 1/2 1 for jHj > 0 8 � 2 e��2jHj=2 e��2jHj for all jHj

4 + 1 1 1 for all jHj 9 � 1 e���4�2jHj� e���4�2jHj� for all jHj

5 + 0 1 1 for all jHj 10 � 0 e���8�2jHj� e���8�2jHj� for all jHj
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�soft � �hard � 2jHj for 0< jHj< 4: (9)

We emphasize that Eq. (9) is valid as T ! 0 for all jHj 2
�0; 4�. For jHj > 4 the lifetime is the first-passage time to
one overturned spin, so that h�i � h�1i � 1=p1, which
015701-3
yields �soft � 8 and �hard � 0. Thus, in contrast to the
hard dynamic, nucleation with the soft dynamic is always
activated, even for infinitely strong fields.

To obtain the prefactors Asoft and Ahard in the two
dynamics, we explicitly write out the four terms obtained
from Eq. (8) for I � 4 with si, gi�1, and Ei from Fig. 1:
h�4i �
1

p1
�

1

4p2
�N � e��8�2jHj�� �

1

4p2

�
N �

N
2
e��4�2jHj� �

1

2
e��12�4jHj�

�

�
1

p3

�
N �

N
2
e��4�2jHj� �

N
4
e��8�4jHj� �

1

4
e��16�6jHj�

�
� A�B� C�D: (10)
Using pm from Table I we identify the dominant terms in
h�4i, and from these we obtain A and � for both the soft
and hard Glauber dynamics for all jHj > 1. (Analogous
calculations can be carried out for arbitrarily small jHj.)

Soft dynamic: For 1< jHj< 2 the sum is dominated
by the last term in C, yielding Asoft � 1=8 and �soft �
16� 4jHj. For jHj � 2 it is dominated by A and the last
terms in B and C, yielding Asoft � 11=8 and �soft � 8.
For jHj > 2 it is dominated by A, yielding Asoft � 1 and
�soft � 8. See Fig. 2.

Hard dynamic: For 1< jHj< 2 the sum is dominated
by the last terms in C and D, yielding Ahard � 3=8 and
�hard � 16� 6jHj. For jHj � 2 it is dominated by A and
the last terms in B, C, and D, yielding Ahard � 2 and
�hard � 4. For 2< jHj< 4 it is dominated by A and the
last term in B, yielding Ahard � 5=4 and �hard �
8� 2jHj. (These results agree with corresponding ones
in Refs. [13,14].) For jHj � 4 the system is unstable and
h�i � h�1i � A, yielding �hard � 0 and Ahard � 2 for
jHj � 4 and Ahard � 1 for jHj > 4. See Fig. 2.

We further performed computer-aided analytic calcu-
lations of h�i with Mathematica [25] by the AMC method
[10,21], using three different classifications of the con-
figurations: 12 transient and 9 absorbing states (denoted
12=9), as well as 7=13 and 13=13. For noninteger 2=jHj
the results were identical to the 1-step approxima-
tion. However, for jHj � 2, A (but not �) was found to
depend slightly on the numbers of states included in the
calculation for both dynamics. With the numbers of states
used, these differences were less than 0.5%. Specifically,
12=9 yielded Ahard � 78 244=45 597 � 1:7160 (1.764 by a
different method in Ref. [13]) and Asoft � 943=704 �
1:3395. See Fig. 2.

Both sets of analytic results were checked by MC
simulations for both dynamics, using the MCAMC
method [10,22]. The system size was L � 24, and 2000
escapes were used (6000 for jHj � 4). The parameters �
and A were determined from weighted two-parameter
linear least-squares fits to plots of T lnh�i vs T [inset in
Fig. 2(a)]. As seen in Fig. 2, the simulation results agree
with the analytical results to within two standard errors.

In conclusion, we have confirmed Eq. (1) [9] for the
low-temperature metastable lifetime of a kinetic Ising
model, both analytically and by MC simulations, finding
both � and A to depend on the specific stochastic dynamic
for all values of the applied field. For a soft Glauber
dynamic [Eq. (4)], � does not equal the energy difference
between the critical cluster and the metastable state for
any value of the field and it also does not vanish in the
strong-field limit, as it does for the conventional, hard
Glauber dynamic [Eq. (2)]. Thus, nucleation under the
soft dynamic remains an activated process for arbitrarily
strong fields. These results are consistent with recent
studies of the microstructure and mobility of field-driven
Ising and solid-on-solid interfaces [18,19]. They indicate
015701-3
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FIG. 2. Analytical and simulated results for the soft and hard
Glauber dynamics for (a) � and (b) A. In the legends,‘‘one-step
analytical’’ refers to the one-step Markov-chain approximation,
‘‘12=9 analytical’’ to the computer-aided AMC calculations
with 12 transient and 9 absorbing configurations, and ‘‘ana-
lytical’’ to results that are identical for all the analytical
calculations. The results only differ for jHj � 2. The inset in
(a) shows analytical (lines) and MC (data points) results for
T lnh�i vs T for the soft dynamic, from which � and A are
obtained.
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that great caution must be shown in formulating and
interpreting stochastic models of physical systems, as
even seemingly minor modifications of the transition
probabilities can significantly affect the nucleation rates.
It might thus be interesting to study the influence of the
stochastic dynamic on dynamic phase transitions in ki-
netic Ising models [26]. We also note that, although our
results are derived for a specific model system, qualita-
tively similar results should apply to kinetic MC simula-
tions for nucleation in a wide range of scientific
disciplines. On the positive side, experimental observa-
tion of the field and temperature dependences of nuclea-
tion and growth could help devise correct stochastic
models of nonequilibrium phenomena.
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