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Pointwise Dimensions of the Lorenz Attractor
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We discuss a connection between two complementary views of the Lorenz attractor: the first is the
accepted view where the attractor has a smooth measure on a fractal support. This complex system is
alternatively manifest as a self-similar curve for the pointwise dimension alpha. We describe why the
latter approach is accessible for the analysis of an experimental signal.
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FIG. 1. The pointwise dimension � for periodic points of
prime orbits of binary length 2 through 17 of the arc 
0
[3] effectively circumvented this difficulty by estimating projected onto x� y.
Time series analysis of experimental data often leads to
the inference that the effective evolution of the system
under observation is primarily controlled by the dynam-
ics of a set of variables spanning a low-dimensional
asymptotic attractor [1]. Neither the exact nature of these
variables nor their evolution equations are known.
However, modern techniques of signal analysis often
permit the computation of bounds on the dimension of
this attractor, as well as other properties such as the
average Lyapunov exponent. Generically, all attractors
have a multifractal structure usefully quantified in terms
of a spectrum of singularities f��� [2]. Here � 2
��min; �max� is the pointwise dimension of the natural
measure � at point xi on the attractor and is defined by
the relation

��xi� � lim
li!0

ln��S�li; xi��
lnli

; (1)

where S�li; xi� denotes a segment in an optimum partition
and li is the diameter of the smallest ball containing S.
f��� is then the Hausdorff dimension of the collection of
all points with pointwise dimension �.

One of the earliest and most striking computations of
such a spectrum was for an attractor associated with an
experimental trajectory on a two-torus with a golden
mean winding number obtained from a forced
Rayleigh-Bénard system at the onset of chaos [3]. An
embedding resulted in a realization of the experimental
attractor in R3 having the appearance of a thin, closed
tube. The transverse structure of the tube is necessarily
fractal, giving rise to the variation in the values of �. By
contrast, one anticipates little variation in � along any
one of the fractal ‘‘threads’’ of the tube.

The natural measure for this attractor is a Sinai–
Ruelle–Bowen (SRB) measure — that is, there is a
smooth variation in the measure along the stretching
direction of a thread, and the support for the measure
has a singular transverse structure (Cantor set). In view of
these statements, it is perhaps remarkable that the authors
of Ref. [3] were able to probe the structure of their
(experimental) attractor in fine enough detail to enable
them to elucidate the multifractal properties. Jensen et al.
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the measure �, not from box-counting techniques as
suggested by Eq. (1), but rather by relating the measure
to an inverse recurrence time for visitations of the tra-
jectory to a ball centered at points xi on the attractor, then
using a partition function to compute f���. The point here
is the association of � with 1=Trec, where Trec is a recur-
rence time. As the radius of the ball centered at xi is
decreased, the trajectory is necessarily close to a periodic
orbit j, say, with period Tj. This is not unlike the asso-
ciation of the pointwise dimension �j with this periodic
orbit, which is very much the approach adopted in this
Letter. Here, in a study of the Lorenz system, we argue
that the direct computation of the multifractal spectrum
of the Lorenz attractor from knowledge of the SRB
measure is impractical—because of the difficulties in
resolving the structure of the fractal support of the mea-
sure in fine enough detail—while a computation from
knowledge of the pointwise dimension associated with
each periodic orbit supported by the attractor is a prac-
tical exercise, as demonstrated elsewhere [4]. Viewed
thus, the complexity inherent in the structure of a SRB
measure on a fractal support is replaced with a different
complexity associated with the self-similar nature of a
single curve; this is shown in Fig. 1. The curve displays
the variation of the pointwise dimension � computed
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from periodic points plotted along a projection of an arc,
discussed below, and it is the structure of this curve which
is the main concern of this Letter.

Here we are interested in the variation in � along the
intersection between the Lorenz attractor [5] and the
Poincaré section z � r	 1. Specifically, we consider nu-
merical solutions to

_xx���y	 x�; _yy� x�r	 z�	 y; _zz� xy	 bz; (2)

at parameter values ��; b; r� � �10; 8=3; 28�. It is well
known that this system has a chaotic attractor [6], whose
intersection with the plane z � r	 1 is shown in Fig. 2.
The points F	 and F� are the symmetric pair of fixed

points �x; y; z� � �

������������������
b�r	 1�

p
;


������������������
b�r	 1�

p
; r	 1� of the

system (2), while the dashed line � passing through the z
axis (the origin in Fig. 2) is a representation of the
intersection of the two-dimensional stable manifold of
the remaining fixed point at the origin with the section.
Further intersections of this manifold with the section
occur and are discussed below.

The intersecting set, 
 � 
0 [ 
1, say, has the appear-
ance of two symmetric arcs stretching between F	 and
F�; these are obtained from the intersection points with
_zz < 0 on the section. The apparent lack of transverse
structure on either branch of 
 arises from limited reso-
lution in the figure and is a consequence of the strong
dissipation in the Lorenz system. It is well known that the
transverse direction is fractal, with a Cantor set struc-
ture [7].

The action of the flow on the section is that of a horse-
shoe, whereby nearby points are expanded in directions
along the arc (positive Lyapunov exponent) and con-
tracted in the transverse direction (negative Lyapunov
FIG. 2. The Poincaré section is the square with opposite
corners at F	 and F�. The partitioning to level four is shown,
and the binary length four periodic orbit 0:001 is indicated by
the dots. The dashed line � represents schematically the first
intersection of the stable manifold of the fixed point at the
origin with the section. The arrow points to the intersection
1:000 \ 1:001; see text for details.
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exponent). Accordingly, we have partitioned the section
as appropriate for the horseshoe, where the digit before
the binary point 0: or 1: indicates which arc the iterate is
on, while digits following the binary point indicate fur-
ther partitioning along the arcs. The flow taking the orbit
from one intersection with the section to the next moves
the binary point one place to the right [4]. More digits
before the point, such as 10: and 00:, correspond to a more
refined partitioning across the arc 
0; for the purpose of
this Letter, we need to know only which of the two arcs
contains the trajectory, hence the single digit. More digits
after the binary point lead to a refinement of the partition
along the arc: 0:100 ! 0:1000 [ 0:1001 is a partitioning
of 0:100 into smaller segments 0:1000 and 0:1001, both of
which are contained within 0:100. In other words, there is
a Markov partitioning of the set 
.

Now consider what we will loosely call an edge be-
tween segments. For example, the edge between 0:1000
and 0:1001 is the set 0:1000 \ 0:1001, which owing to the
transverse structure on 
0 is in reality a fractal dust. All
such edges result from further intersections of the two-
dimensional stable manifolds of the fixed point at the
origin with 
0 on the surface of section z � r	 1. Such
an intersection occurs at the edge 1:000 \ 1:001, as shown
in Fig. 2. It is a direct consequence of this infinite number
of intersections that gives � the complicated fractal
variation along the arc shown in Fig. 1. The left inset
shows the self-similar structure centered around
0:0 \ 0:1— that is, in the vicinity of the intersection of

0 with �. Note that the structure of the right inset
replicates that of the full figure. We now discuss how
this curve was obtained.

A ‘‘typical’’ estimate of the dimension of the Lorenz
attractor using standard box-counting techniques Eq. (1)
will result in a value for � � D1 (the information dimen-
sion) � 1:062 
 
 
 . That is, with respect to the natural
measure on the attractor, ��x� takes the common value
quoted for almost every point x. Generically, a chaotic
attractor has a countable dense set of unstable periodic
orbits embedded within it. Grebogi et al. [8] demonstrate
that, for points chosen close to the stable or unstable
manifolds of such orbits, ��x� differs from D1. Focus-
ing on such periodic orbits, they then introduce the notion
of pointwise dimension �j for points on the jth-periodic
orbit in terms of the characteristic (Floquet) multipliers
for this orbit. For the Lorenz system, this reads

�j � 1	
ln�j
ln�j

; (3)

where �j > 1 > �j are the multiplier magnitudes.
Wiklund and Elgin demonstrate how explicit results for
� for each periodic orbit can be appropriately averaged to
produce the required singularity spectrum [4].

The basic idea is as follows: continued refinement of
the partition along 
0 will produce segments with binary
string of arbitrary length. A string sequence indefinitely
repeated corresponds to a periodic orbit. The procedure
014101-2



FIG. 3. The recurrence measure � for periodic points of
prime orbits of binary length 2 through 17 of the arc 
0

projected onto x� y.
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then is to find all periodic points below some maximal
binary length along 
0, compute �j for such points in
accordance with Eq. (3), then display the results in rela-
tion to the periodic points graphically, as in Fig. 1. In
carrying out this procedure, only prime periodic orbits
need be considered. These are periodic orbits of length n,
say, which are not repeats of orbits of shorter binary
length. All such orbits to binary length 17 are included
in Fig. 1, where we parametrize points along 
0 by x� y.
Details on how such periodic points were obtained are
discussed below. For the moment, we emphasise the self-
similar nature of the variation of � along the arc and
remind the reader that the origin for this is the countable
infinity of intersections of the two-dimensional stable
manifold of the origin with the section z � r	 1.

The action of the horseshoe on the section is often
likened to that of the Baker’s map (SRB measure), rep-
licating the stretching and folding action found in the
Lorenz system. Essentially, this is a refinement of a
simple Cantor set into two segments, la and lb, say, with
phenomenologically associated probability measures pa
and pb. The partition function

1 � lim
n!1

X�n�

i�1

pqi
l�i
;

where n is the level of refinement of the Cantor set and q
and ��q� are the usual thermodynamic variables, can be
evaluated explicitly. Solving the transcendental equation

pqa
l�a

�
pqb
l�b

� 1 (4)

for ��q� allows one to compute f��� in the usual way. The
association of pqi =l

�
i with �q	�	1=�q [8] permits direct

computation of the curve f��� from periodic orbits sup-
ported by the map [4].

To complete this picture, we now consider how� varies
with an ordering of the periodic points. To do this, we
return to the Lorenz system. Figure 1 indicates that the
variation in �, as computed using periodic orbits, within
any ball centered at a point on the arc 
0 always has a
self-similar structure irrespective of the radius of the
ball. We may, consistent with Eq. (1), now compute an
average over all such periodic points within the ball taken
in the limit where the diameter of the ball is taken to zero;
call this h�ji�x�, which varies smoothly along 
0.
Recently, the measure introduced in connection with a
return map f�x� for a geometric model of the Lorenz
attractor was shown to be a SRB measure [6].

Shown in Fig. 3 is a different estimate for��x� obtained
in a manner more in keeping with that used by Jensen
et al. [3]. These authors estimate � [as appears in our
Eq. (1)] as the inverse recurrence time for visitations of
the orbit to a ball centered at xi, then use a partition func-
tion to compute � and f���. As mentioned previously, the
point here is the association of� with 1=Trec, where Trec is
a recurrence time. Here we modify their procedure
014101-3
slightly and attribute to points on 
0 a measure deter-
mined by a recurrence time to the section. Specifically,
for a set of arbitrary points on 
0 we compute

� � lim
n!1

Trec
n
;

where Trec is now the time taken for the nth return to the
section. The limit is equivalent to computing a value for�
from a return time to a ball of radius l centered at point x
taken in the limit l! 0, as computed by Jensen et al. [3].
For the subset of periodic points on the arc the limit is
simply equal to the period of the orbit divided by the
binary length. Since we have at hand a large and accurate
collection of periodic orbit data, we have constructed the
� curves of Fig. 3 using this information only. The curves
of Figs. 1 and 3 show a close correspondence in their self-
similar structure, indicating that the use of recurrence
time to compute a multifractal spectrum is an excellent
approximation to computing the same spectrum from
periodic orbits, more so when the latter are not
known — as for the case of an experimental signal.

Interpreting Fig. 3 as a set of experimental data, D1

may be directly computed by covering the arc 
0 with
balls of diameter l, where the average value of � within
ball i defines the quantity �i. A value for D1 is then
obtained by computing

P
i�

	1
i ln�	1

i = lnl, in the limit
l! 0. The construction of the f��� spectrum from the
experimental data, following Ref. [3], will provide
greater information about the attractor, including a value
for D1. However, noise contained within real data will
limit the resolution of the fine structure in Fig. 3, although
this seems not to impede the computation of f��� as
demonstrated in Ref. [3].

Figure 4 presents the � plots for increasing maximal
binary length.We see that as binary length is increased —
at least until Np � 17— the effect is to fill out the plot in
the wings. Investigation at greater lengths is currently
being undertaken, which is problematic due to the com-
binatorial explosion in the number of periodic points. We
014101-3



FIG. 4. The pointwise dimension along 
0 with increasing
maximum binary orbit length Np: (a) Np � 8, with 235 peri-
odic points; (b) Np � 11, 2005 periodic points; (c) Np � 14,
16 237 periodic points; (d) Np � 17, 130 777 periodic points.
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now describe in more detail the technique for computing
the periodic orbits.

The method employed to find all prime orbits to string
length Np � 18 is similar to that in Ref. [4]. We choose a
point and integrate forward in time, which will yield a
(chaotic) trajectory on the attractor. The encoding of this
general trajectory is generated by recording the digit 0
when the fixed point F	 is encircled, digit 1 for F�,
consistent with our encoding of the horseshoe. If this
binary stream contains a substring comprised of some
repeats of the prime string s1s2 
 
 
 sn, we know by shad-
owing arguments that the corresponding portion of the
trajectory is near a periodic orbit p of binary length n.
One section with the same binary code as p is then used
as an initial mesh for a boundary value problem (BVP)
routine, which, if convergent, will return the periodic
orbit with symbolic encoding s1:s2 
 
 
 sn. Each periodic
point of p is then determined by choosing the nearest
calculated point before the section is reached, integrating
forward, and taking a final Hénon step to land precisely
on z � r	 1.

To obtain the multipliers, the monodromy matrix JT
must be calculated. The Lorenz system is extended to
include the nine equations of the evolution of the
Jacobian of the flow _JJ � VJ, where V is the derivative
matrix of the right-hand side of Eq. (2). Choosing a
periodic point of p as an initial condition, we now in-
tegrate this new system to find Jt for t 2 �0; T� using a
standard initial value problem routine. This provides an
approximate mesh for the extended Lorenz system from
which we may accurately find JT using a BVP code.

When �j=�j for long orbits becomes too large, the
routine fails. Then, in general, we may break our problem
into m smaller boundary value problems, where m 2
�20n; 40n�. We take m samples at times ti from the solu-
tion mesh of p and solve the extended system on the
intervals �ti; ti�1�, i � 0; . . . ; m	 1, each with the initial
condition J0 � I and boundary conditions taken from p.
Note that in this case rather than using a BVP routine
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taking an initial mesh, a BVP routine requiring only the
interval end points is needed, since the solution on each
interval is much more tractable. The resulting m matrices
are then multiplied out evenly to give JT .

The above calculations were performed on an AMD
Athlon processor using 16 decimal digit precision. The
BVP codes used were the finite-difference based routines
D02RAF and D02GAF provided by the Numerical
Algorithms Group; the tolerance used for finding the
orbits was 10	10. For all orbits, the monodromy matrix
was calculated using both methods described above, with
the error in the unit multiplier (the multiplier along the
orbit) used to determine the more accurate solution. The
first method with tolerances 10	8 to 10	10 generally fails
for binary lengths greater than 13, but otherwise was
found to be more accurate than the second. With the
second method, it was possible to determine the multi-
pliers of long near-homoclinic orbits such as 1:116020,
which gave an error of less than 10	5 in the unit multi-
plier, even though �j=�j � 10170.

In conclusion, we have discussed the connection be-
tween two complementary views of the Lorenz attractor:
the first is the standard view, where the attractor has a
fractal support and a SRB measure. This complex system
is alternatively manifest as a self-similar curve where the
pointwise dimension � for periodic points is plotted
along the arc 
0. These models complement each other
in the sense that either can be used to compute the multi-
fractal spectrum for the attractor. Further, we have dis-
cussed the similarity between an approximation based on
periodic orbits and one where a partition function is
constructed from knowledge of recurrence times Trec to
a ball on a surface of section. It is this last approach which
is most accessible to the experimentalists—as demon-
strated in the work of Jensen et al.—through which it is
possible to explore the multifractal nature of the under-
lying attractor in the experimental system.

More plots may be found at http://gratrix.net/lorenz.
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