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Discrete Entanglement Distribution with Squeezed Light
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We show how one can entangle distant atoms by using squeezed light. Entanglement is obtained in
steady state, and can be increased by manipulating the atoms locally. We study the effects of
imperfections, and show how to scale up the scheme to build a quantum network.
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FIG. 1 (color online). Schemes for entanglement creation over
long distances. (a) Entanglement is obtained by the emission
and subsequent absorption of a photon. (b) A detection of a
photon projects the atoms in an entangled state. (c) Both
internal levels.
cavities are driven by a common source of two-mode squeezed
light. In the steady state, the atoms become entangled.
Distributing entanglement among different nodes in a
quantum network is one of the most challenging and
rewarding tasks in quantum information. This may allow
one to extend quantum cryptography over long distances
[1], and may lead to some practical applications in the
context of secret sharing [2] or distributed quantum com-
putation [3]. From the more fundamental point of view,
it may allow us to perform loophole-free tests of Bell
inequalities [4].

In a quantum network, photons are used to entangle
atoms located at different nodes which store the quantum
information. Local manipulation of the atoms using la-
sers permits then to process this information. In principle,
one can construct quantum networks using discrete [5]
(qubit) or continuous variable (CV) entanglement [6] (the
one contained, e.g., in two-mode squeezed states [7]).
However, the fact that Gaussian states cannot be distilled
using Gaussian operations [8] may strongly limit the
applications of continuous variable entanglement in quan-
tum networks and repeaters.

There have been several proposals to obtain discrete
entanglement of distant atoms using high-Q cavities.
There are two kind of schemes [5,9–11] (see also [12]):
(i) [Fig. 1(a)] An atom A, driven by a laser, emits a photon
into the cavity mode. The photon enters the second cavity
where it is absorbed by atom B [5,9]. (ii) [Fig. 1(b)] Both
atoms are simultaneously driven by a laser; if a photon is
detected at halfway between the cavities, the atoms get
projected into an entangled state [10,13]. Most of these
schemes operate in a transitory regime; i.e., the entangle-
ment is achieved at a specific time and the lasers have to
be switched on and off appropriately. Moreover, dissipa-
tion may introduce imperfections in the desired en-
tangled state. In this Letter, we propose and analyze a
scheme to distribute discrete entanglement which works
in steady state. As opposed to these other schemes, dis-
sipation is a necessary ingredient of our scheme which, as
we will show, gives it a very robust character. Moreover, it
does not create entanglement but rather transforms it
from CV (in light) to discrete (atoms). We show how a
small amount of CV entanglement can be used to create
maximally entangled qubit states. We also show how this
scheme can be scaled up by using atoms with several
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The basic idea is represented in Fig. 1(c). Both cavities
are simultaneously driven by squeezed light. The use of
squeezed light to drive a single atom was first proposed
by Gardiner [14], who studied several phenomena on
the atomic steady state. Kimble and colleagues [15], in
a remarkable experiment, were able to couple squeezed
light in a cavity containing atoms, and confirmed some
of the physical phenomena theoretically predicted.
Recent experiments in which atoms have been stored in
high-Q cavities for relatively long times [16] pave the way
for the implementation of several quantum information
protocols and, in particular, the one analyzed in the
present Letter.

Let us consider two two-level atoms, A and B, confined
in two identical cavities. The cavities are driven by an
external source of two-mode squeezed light [see Fig. 1(c)].
Assuming that the bandwidth of the squeezed light is
larger than the cavity damping rate �, the evolution of the
atoms-plus-cavity modes density operator, �, can be de-
scribed using standard methods [7] by

d�
dt

� �i�Ha �Hb; �� � �Lcav �La
at �Lb

at��: (1)

Here Ha � ga�a�
�
a � ay��

a � describes the interaction of
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FIG. 2 (color online). Atomic level schemes. Double lines in-
dicate coupling to cavity modes, and single to lasers: (a) jgi and
jei are used for entanglement creation; jg0i to store the qubit
once the entanglement has been obtained; jg00i for entangle-
ment concentration. (b) The four internal ground levels are
coupled to two cavity modes (a and b) by Raman transitions as
indicated.
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atom A with the corresponding cavity mode, where a is
the mode annihilation operator and ��

a � ���
a �

y �
jeiahgj, with jgi and jei denoting the ground and excited
atomic states [17]. Spontaneous emission jeia ! jgia is
described by the usual Liouvillian La

at [7], proportional to
the spontaneous emission rate �. The terms Hb and Lb

at

are analogously given. Finally, the interaction between
the cavity modes and the squeezed light is given by

L cav� � ��N � 1�
X

��a;b

����y � �y���

� �N
X

��a;b

��y��� ��y��

� �M�2a�b� 2b�a� 2ba�� 2ab�� � H:c:;

(2)

(H:c: denotes Hermitian conjugate). Here, N and M char-
acterized the two-mode squeezed vacuum and fulfillM 
�N�N � 1��1=2. We will concentrate in the case ga �
gb :� g since the formulas are considerably simplified.
The effects for ga � gb will be analyzed at the end.

We first consider the ideal case � � 0 and perfect
squeezing

M � �N�N � 1��1=2: (3)

We define annihilation operators ~aa � �N � 1�1=2a�
N1=2by and ~bb � �N � 1�1=2b� N1=2ay, so that [cf. Eq. (1)]

d�
dt

� �i� ~HHa � ~HHb; �� � ~LLcav�; (4)

where now

~HHa� g���a ~aa� ~aay��a �; (5a)

~HHb� g���b ~bb� ~bby��b �;
~LLcav���

X
��~aa;~bb

����y ��y���;

(5b)

with ��a;b����a;b�
y ��N�1�1=2��

a;b�N1=2��
b;a. Solving

(4) seems to be a difficult task. However, one can easily
determine the steady state, which is given by

j�i �

 ����������������
N � 1

2N � 1

r
jgiajgib �

����������������
N

2N � 1

r
jeiajeib

!
j0i~aaj0i~bb;

(6)

where j0i~aa;~bb are the vacuum states of the new modes ~aa and
~bb, respectively. This is a pure state, which for N � 1
tends to a maximally entangled state. For a realistic value
of N � 1, one still obtains a state with a large entangle-
ment of formation (EoF) E��� � 0:92. This quantity is
defined as the minimum amount of singlets required to
create the state using local operations and classical com-
munication [18].

After the creation of (6), one switches simultaneously
off the squeezing source and transfers the excited state jei
of both atoms to some other internal ground state jg0i
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using a laser, in order to avoid spontaneous emission
[Fig. 2(a), (i)]. After that, a maximally entangled state
can be obtained as follows [Fig. 2(a), (ii)]. In each of the
atoms, a radio frequency (or two-photon Raman) pulse is
applied which transforms jgi ! cos�jgi � sin�jg00i,
where jg00i is an auxiliary internal ground state, while
the state jg0i is not affected. Then, the state jg00i is
detected in both atoms using the quantum jump tech-
nique. If neither of them is found in jg00i, the atomic state
will be projected onto one proportional to jgiajgib �
jg0iajg0ib if one chooses cos��� � �N=�N � 1��1=4. Note
that this measurement corresponds to a generalized mea-
surement but in which the role of the ancilla is taken by
the auxiliary level jg00i, i.e., no extra atoms are required.
The success probability depends on the value of N, but
after a sufficiently large number of trials, a maximally
entangled state can be prepared for any N > 0.

In practice, there will be several physical phenomena
which will distort the atomic entanglement in steady
state. In the following, we will evaluate the effect of the
most important sources of imperfection.

In order to analyze the nonideal situation � � 0 and
M< �N�N � 1��1=2, we consider g

�������������
N � 1

p
;� � �. Then,

we can eliminate the cavity mode by extending the
procedure of [19]. We define � :� tra;b���, so that

d�
dt

� L1��La
at��Lb

at�; (7)

where L1��� � �ig tra;b�a���
a ; �� � H:c:� � a$ b.

Integrating formally Eq. (1), and substituting the result
in (7), one can check that, in the limit �t� 1, the
dominant contribution is given by the term coming from

��t� ’
Z t

0
d�eLcav�L2���t� ���; (8)

where L2��� � �ig��a; ���
a � � H:c:� � a$ b. Using

eLcav���a; R�� � e����a; eLcav�R�, we see that the inte-
grand will vanish for times ��� 1, so that we can
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extend the limit of the integral to infinity. Moreover, since after time t the cavity mode will be driven to its steady state,
�ss, which fulfills Lcav��ss� � 0, we can replace eLcav���t� �� ! ��t� � �ss. This procedure amounts to performing the
Born-Markov approximations [7], but here the bath itself (cavity mode) undergoes a dissipative dynamics. After
lengthy algebra, we obtain

_�� �
�
2
�n� 1�

X
��a;b

���
����

� � ��
���

��� �
�
2
n
X

��a;b

���
����

� � ��
���

���

� �m���
a ��

�
b � ��

b ��
�
a � ��

b �
�
a �� ��

a �
�
b �� � H:c: (9)
Here

� �
g2

�
�2� ��; � :� ��=�g2�; (10a)

n � N�1� �=2��1; m � �M�1� �=2��1: (10b)

The interpretation of (9) is straightforward. It describes
the interaction of the two atoms with a common squeezed
reservoir in which the squeezing parameters are renor-
malized due to the presence of spontaneous emission. The
steady state solution depends only on n and m, and can be
easily determined. Instead of analyzing our results in
terms of n and m, it is more convenient to analyze them
in terms of the physical parameters � andN, choosing (3).
Note that it is always possible to find an �, and an N and
M fulfilling (3), which give any prescribed values of n
and m, so that the effects of imperfect squeezing can be
directly read off from our analysis.

In Fig. 3(a), we have plotted the atomic EoF of the
steady state as a function of � for various values of N.
The most important aspect is that for � � 0 increasing
the squeezing does not necessarily lead to an increase
in the EoF. For each value of �, we have determined the
best choice of N, which is shown in the inset. For realistic
parameters � & 0:1, the best choice of N is around 0.6,
leading to an EoF of 0.638. In Fig. 3(b), we have plotted
the results when the filtering measurement described
above is performed. Here we see that the achievable
entanglement significantly increases. For � � 0:1, one
obtains an EoF of 0.775.

In Fig. 4(a), we have analyzed the effects of the im-
precision in the position of the atoms [20]. We have first
extended our analysis to the case ga � g cos��a� � gb �
g cos��b�, by deriving a master equation analogous to (9).
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FIG. 3. EoF of the atoms in steady state as a function of � and
N: (a) without generalized measurement; (b) with generalized
measurement. The solid line indicates the optimal value and the
inset gives the N for which the EoF is optimal.
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We have then averaged the density operator correspond-
ing to the steady state with respect to �a and �b, with a
weight function p��� / exp���2=�2s2��. We have plotted
the resulting EoF vs s, which measures the uncertainty in
the atomic position. The figure shows that this uncertainty
does not have dramatic effects in the EoF, as long as the
position of the particle is not far from the antinode of the
cavity mode standing wave.

As mentioned above, we are transforming the CV
entanglement contained in the squeezed vacuum state of
the incident light into discrete (qubit) entanglement. In
Fig. 4(b), we have analyzed the efficiency of this process.
We have plotted the achieved EoF vs the EoF contained in
the squeezed state for various values of �. The transfer is
more efficient for small N, something that can be attrib-
uted to the fact that only two Schmidt coefficients are
relevant for the two-mode squeezed state.

An important aspect of our scheme is that it can be
scaled up to build a quantum communication network
or quantum repeaters. The idea is to embed two (or
more) atoms in each cavity, and to use two modes in
each of them. Atoms A1 and B2 can interact with modes
a1 and b2 in their respective cavities, which in turn are
driven by two-mode squeezed light. Atoms B1 and C2
can also become entangled in a similar way by interact-
ing with modes b1 and c2, respectively. In the ideal case,
after the entanglement is obtained, a measurement in
atoms B1 and B2 will yield an entangled state between
atoms A1 and C2. In the presence of imperfections, the
entanglement will be degraded every time we perform
one of these operations (i.e., as we try to extend the
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FIG. 4. (a) EoF of the atoms in steady state as a function of
the parameter s, for N � 0:5. Upper (lower) two curves corre-
spond to the case with (without) measurement after prepara-
tion. (b) EoF of the atomic state as a function of the one
corresponding to the squeezed state �in.
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entanglement over longer distances). In order to avoid this
problem, one can use other auxiliary atoms in each cavity
and perform entanglement purification as it is required to
build a quantum repeater [1].

For a small number of nodes, it is possible to perform
these experiments with a single atom per cavity and
without having to perform joint measurements. This is
not possible with two-level atoms, since it is known that
there is a maximum amount of entanglement that it can
share with two neighboring atoms [21]. This problem can
be circumvented by using several internal states, since
then it is indeed possible that one atom shares two ebits
with two other atoms. For example, one may take the
scheme of Fig. 2(b), where we have renamed the internal
states. Two cavity modes are used, which connect pairs of
levels with the help of off-resonant laser beams in Raman
configuration. Now, let us consider that we have three
atoms A, B, and C, in three different cavities. The atoms
in A andC have the same configuration as before, whereas
the atom in cavity B has the one indicated in Fig. 2(b).
The Hamiltonian, after adiabatically eliminating the ex-
cited state of atom B, has the form

H � g���
a a� ��

b1
b1 � ��

b2
b2 � ��

c c� � H:c: (11)

Here, ��
a;c are defined as before, whereas

��
b1

� j1; 0iBh0; 0j � j1; 1iBh0; 1j; (12a)

��
b2

� j0; 1iBh0; 0j � j1; 1iBh1; 0j: (12b)

Now, if modes a and b1 and modes c and b2 are driven
by two independent sources of squeezed light, under
ideal conditions (� � 0 and perfect squeezing) the steady
state is

j�iss �
N� 1

2N� 1
jgiAj0; 0iBjgiC �

N
2N� 1

jeiAj1; 1iBjeiC

�

��������������������
N�N� 1�

p
2N� 1

�jgiAj0; 1iBjeiC � jeiAj1; 0iBjgiC�:

In the limit N � 1, this state contains two ebits, one
between A and B and another between B and C.
Alternatively, an appropriate measurement in B will pro-
duce a maximally entangled state between A and C with
certain probability. This scheme can be easily generalized
to a larger number of nodes. However, as mentioned
above, the role of the imperfections will be important
and one eventually needs to consider several atoms in
each cavity to purify the obtained entanglement.

In conclusion, we have shown that atoms can get en-
tangled by interacting with a common source of squeezed
light. The CV entanglement can, in this way, be trans-
formed into a discrete one in steady state. Local mea-
surements result in a more efficient entanglement
creation. Given the experimental progress in trapping
atoms inside cavities [16] and the successful experiments
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on coupling squeezed light into a cavity [15], the present
scheme may become a very robust alternative to current
methods to construct quantum networks for quantum
communication.
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Note added.—After completion of this work, we
learned of a related problem, using an atomic Raman
configuration [22].
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