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We consider the creation of mobile and nonlocal spin-entangled electrons from tunneling of a BCS-
superconductor (SC) to two normal leads of finite resistivity. The resulting dynamical Coulomb
blockade effect, which we describe phenomenologically in terms of an electromagnetic environment,
is shown to be enhanced for tunneling of two electrons from a Cooper pair into the same lead compared
to the desired pair-split process where each electron enters a different lead. Conversely, this latter
process is suppressed by a finite separation between the tunneling points on the SC.
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FIG. 1. Entangler setup: A BCS bulk superconductor (SC)
with chemical potential �S is tunnel coupled (amplitude t0) via
points r1 and r2 of the SC to two Fermi liquid leads 1; 2 with
resistance R1;2. The leads are held at the same chemical
potential �l such that a bias voltage � � �S ��l is applied
duced at low temperatures. Even larger resistances R �
200–250 k
 have been measured in Cr leads [13].

between the SC and the two leads via the voltage source V. The
tunnel junctions 1; 2 have capacitances C1;2.
Introduction.—The controlled creation of nonlocal en-
tanglement is crucial in quantum communication as well
as in quantum computation tasks [1]. Several solid state
entanglers, a device that creates mobile and nonlocal
pairwise entangled electrons, were proposed recently
[2–6]. A particularly interesting quantity is the spin of
the electron which was shown to be a promising realiza-
tion of a quantum bit [7]. A natural source of spin entan-
glement is provided by Cooper pairs in an s-wave
superconductor (SC), since the Cooper pairs are in a
spin-singlet state. Weakly coupling the SC to a normal
region allows for (pair-)tunneling of Cooper pairs from
the SC to normal leads and single-particle tunneling is
suppressed at low energies below the SC gap. Coulomb
interaction between the two electrons of a pair can then be
used to separate them spatially leading to nonlocality.
To mediate the necessary interaction entangler setups
containing quantum dots [3] or that exhibit Luttinger
liquid correlations [4,5] (e.g., nanotubes in the metallic
regime) were proposed recently.

In this Letter we show that a considerably simpler ex-
perimental realization can be used to generate the neces-
sary Coulomb interaction between the electrons of a pair.
Indeed, if the normal leads are resistive a dynamical
Coulomb blockade (CB) effect is generated with the con-
sequence that in a pair tunneling process into the same
lead the second electron still experiences the Coulomb
repulsion of the first one, which has not yet diffused away.
Natural existing candidates with long spin decoherence
lengths (�100 �m [8]) for such a setup are, e.g., semi-
conductor systems tunnel coupled to a SC, as experi-
mentally implemented in InAs [9], InGaAs [10], or
GaAs=AlGaAs [11]. Recently, a two-dimensional electron
gas (2DEG) with a resistance per square approaching the
quantum resistance RQ � h=e2 � 25:8 k
 could be
achieved by depleting the 2DEG with a voltage applied
between a back gate and the 2DEG [12]. In metallic
normal NiCr leads of width �100 nm and length
�10 �m, resistances of R � 22–24 k
, have been pro-
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We use a phenomenological approach to describe
charge dynamics in the electromagnetic circuit which is
described in terms of normal-lead impedances and junc-
tion capacitances; see Fig. 1. The subgap transport of a
single SN junction under the influence of an electromag-
netic environment has been studied in detail [14,15]. In
order to create nonlocal entangled states in the leads we
have to go beyond previous work to investigate the physics
of two tunnel junctions in parallel with two distinct
transport channels for singlets. A Cooper pair can tunnel
as a whole into one lead, or the pair can split and the two
electrons enter separate leads, leading to a nonlocal spin
singlet in the leads. Subsequently, the degree of spin
entanglement can be detected via an enhanced shot noise
in a beam splitter setup [16] or, alternatively, by measur-
ing Bell’s inequality [17]. By using spin filters, e.g.,
quantum dots in the CB regime [18], one can then use
current-current correlation measurements for testing
Bell’s inequality. In the case where the pair splits we
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find that the dynamical CB effect is uncorrelated for the
two electron charges. In contrast, if the two electrons
tunnel into the same lead we find a dynamical CB con-
sistent with a charge q � 2e, where e is the elementary
charge. Thus the CB effect is twice as large for the unsplit
process which enhances the probability for a nonlocal
(pair-split) process. On the other hand, we show that the
spatial correlations of a Cooper pair results in a suppres-
sion factor for tunneling via different junctions which is
weaker for lower dimensional SCs.

Setup and formalism.—The setup is sketched in Fig. 1.
The SC is held at the (electro-)chemical potential�S by a
voltage source V. The two electrons of a Cooper pair can
tunnel via two junctions placed at points r1 and r2 on the
SC to two separate normal leads 1 and 2 which have
resistances R1 and R2, respectively. They are kept at the
same chemical potential �l so that a bias voltage � �
�S ��l is applied between SC and leads [19]. The system
Hamiltonian decomposes into three parts H �
He �Henv �HT . Here He � HS �

P
n�1;2Hln describes

the electronic parts of the isolated subsystems consisting
of the SC and Fermi liquid leads n � 1; 2, with Hln �P

p�"p c
y
np�cnp�, where � � �"; #
. The s-wave bulk SC is

described by the BCS Hamiltonian HS ��SNS �P
k�Ek �

y
k��k� with the quasiparticle spectrum Ek �

��2k ��
2
1=2 where �k � k2=2m��S. The electron cre-

ation �cyk�
 and annihilation �ck�
 operators are related to
the quasiparticle operators by the Bogoliubov transfor-
mation ck�"=#� � uk�k�"=#� � vk�

y
�k�#="�, where uk and vk

are the usual BCS coherence factors. To describe resis-
tance and dissipation in the normal leads we use a phe-
nomenological approach [20], where the electromagnetic
fluctuations in the circuit (being bosonic excitations) due
to electron-electron interaction and the lead resistances
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are modeled by a bath of harmonic oscillators which is
linearly coupled to the charge fluctuation Qn of the junc-
tion capacitor n (induced by the tunneling electron). This
physics is described by [20,21]

Henv;n �
Q2n
2Cn

�
XN
j�1

�
q2nj
2Cnj

�
�!n � ’nj
2

2e2Lnj

�
: (1)

The phase!n of junction n is the conjugate variable to the
charge satisfying �!n;Qm
 � ie%n;m. As a consequence
e�i!n reduces Qn by one elementary charge e. We remark
that the SC is held at constant chemical potential �S by
the voltage source; see Fig. 1. Therefore the charge re-
laxation of a nonequilibrium charge on one of the capaci-
tors described by (1) does not influence the charge
dynamics of the other junction and, as a consequence,
Henv �

P
n�1;2Henv;n [22]. Electron tunneling through

junctions 1; 2 located at points r1, r2 of the SC nearest
to the leads 1; 2 is described by the tunneling Hamiltonian
HT �

P
n�1;2HTn � H:c:, where

HTn � t0
X
�

 y
n����rn
 e�i!n : (2)

Here t0 is the bare electron tunneling amplitude which we
assume to be spin independent and the same for both
leads. Since HT conserves spin we have �H;S2tot
 � 0,
and thus the two electrons from a given Cooper pair
singlet which have tunneled to the lead(s) remain in the
singlet state.

Current of two electrons tunneling into different
leads.—We use a T-matrix approach [23] to calculate
tunneling currents. At zero temperature the current I1
for tunneling of two electrons coming from the same
Cooper pair into different leads is given to lowest order
in t0 by [4]
I1 � 2e
X
n�n0

m�m0

Z 1

�1
dt

Z 1

0
dt0

Z 1

0
dt00e�)�t

0�t00
�i�2t�t0�t00
�hHy
Tm�t� t00
Hy

Tm0 �t
HTn�t
0
HTn0 �0
i; (3)

where )! 0�, and the expectation value is to be taken in the ground state of the unperturbed system. The physical
interpretation of Eq. (3) is a hopping process of two electrons with opposite spins from two spatial points r1 and r2 of the
SC to the two leads 1; 2, thereby removing a Cooper pair in the SC, and back again. The delay times between the two
tunneling processes of the electrons within a pair are t0 and t00, respectively, whereas the time between destroying and
creating a Cooper pair is given by t. This process is contained in the correlation functionX
n�n0

m�m0

hHy
Tm�t� t00
Hy

Tm0 �t
HTn�t0
HTn0 �0
i � jt0j4
X

�; n�m

fGn��t� t00
Gm;���t� t0
F nm��t0
F �
nm��t00
hei!n�t�t00
e�i!n�0
i

� hei!m�t�t0
 e�i!m�0
i � Gm;���t� t0 � t00
Gn��t
F nm��t
0


� F �
mn;���t

00
hei!m�t�t0�t00
e�i!m�0
ihei!n�t
 e�i!n�0
ig: (4)

The lead Green’s functions are Gn��t
 � h n��t
 
y
n��0
i ’ �+l=2
=it, with +l being the density of states (DOS) per

volume at the Fermi level �l of the leads. The anomalous Green’s function of the SC is F nm��t
�
h����rm;t
���rn;0
i��sgn��
=VS


P
kukvkexp��iEkt� ik�%r
 with %r � r1 � r2, and VS is the volume of the

SC. The bath correlator can be expressed as hexp�i!n�t
� exp�� i!n�0
�i � exp�J�t

 with J�t
 �
2
R
1
0 �d!=!
�ReZT�!
=RQ
�exp��i!t
 � 1
. Here we introduced the total impedance ZT � �i!C� R�1
�1, with a

purely Ohmic lead impedance Zn�!
 � R, which we assume to be the same for both tunnel junctions and leads. For
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small times, !Rjtj � 1, we can approximate J�t
 �
�iEct where Ec � e2=2C is the charging energy and
!R � 1=RC is the bath frequency cutoff which is the
inverse classical charge relaxation time /cl of an RC
circuit. For the long-time behavior, !Rjtj � 1, we get
J�t
 � ��2=g
�ln�i!Rt
 � �
 with � � 0:5772 the
Euler number and g � RQ=R is the dimensionless lead
conductance.

We first consider the low bias regime �� �; !R. In
this limit the delay times t0 and t00 & 1=� can be ne-
glected compared to t & 1=� in all correlators in (4) and
the bath correlators are dominated by the long-time be-
havior of J�t
. We then obtain for the current

I1 � e1��2F2d�%r

e�4�=g

��4=g� 2


�
2�
!R

�
4=g
: (5)

The spatial correlation of a Cooper pair results in
the suppression factor Fd�3�%r
 � �sin�kF%r
=kF%r
 �
exp��%r=1�
 with %r � j%rj. The exponential decay
sets in on the length scale of the coherence length �. It
is on the order of micrometers for usual s-wave materials
and therefore %r� � for %r in the range of nanometers.
More severe is the power-law decay / 1=�kF%r
2 with kF
the Fermi wave number in the SC. This power law is
sensitive to the effective dimensionality d of the SC
with weaker decay in lower dimensions. Indeed, in two
dimensions [24] and for kF%r� 1, but still %r < �, we
get F2d�2 / 1=�kF%r
, and in one dimension there is no
power-law decay as a function of kF%r. In (5) we intro-
duced the gamma function ��x
 and the dimensionless
tunnel conductance � � 1+S+ljt0j2 with +S being the
DOS per volume of the SC at the Fermi level �S. The
exponent 4=g in (5) is twice the value for single electron
tunneling [20] via one junction since the tunneling events
into different leads are uncorrelated.

We consider now the large bias regime �; �� !R.
For �� j�� Ecj � !R we can use the short time
expansion for J�t
 in (4) and can again neglect the
delay times t0 and t00 compared to t in all correlators
in (4). We then obtain for I1 in the large bias limit and
up to small contributions �e1�2F2d�%r
!R�O�!R=�
 �
O�!R=j�� Ecj



I1 � e1�2F2d�%r
 ��� Ec
��� Ec
: (6)

This shows a gap in I1 for �< Ec and R! 1 which is
the hallmark of dynamical CB.

Current of two electrons tunneling into the same
lead.—The current I2 for tunneling of two electrons
into the same lead, 1 or 2, is given by (3) but with n �
n0 and m � m0 � n. We assume that the two electrons
tunnel off the SC from the same point and therefore
%r � 0 here. Since both electrons tunnel into the same
lead the bath correlation functions do not separate any-
more as was the case in (4). Instead we have to look at the
full 4-point correlator
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hei!n�t�t00
ei!n�t
e�i!n�t0
e�i!n�0
i

� eJ�t�t
0�t00
�J�t�t0
�J�t�t00
�J�t
�J�t0
�J��t00
: (7)

The lead correlators again factorize into a product of two
single-particle Green’s functions since they are assumed
to be Fermi liquids and in addition there appear no spin
correlations due to tunneling of two electrons with oppo-
site spins.

We first consider the low bias regime �� !R;�.
Here again we can assume that jtj is large compared
to the delay times t0 and t00, but it turns out to be crucial
to distinguish carefully between �� !R and �� !R.
We first treat the case �� !R and approximate
exp���J�t0
 � J��t00
�
 ’ exp��iEc�t00 � t0

 in (7). In
this limit and for � > Ec the current I2 becomes

I2 � e1��2
�4�=1
2

�2 � E2c

� arctan2

8<
:

����������������
�� Ec
�� Ec

s 9=
; e�8�=g

��8=g� 2


�
2�
!R

�
8=g
: (8)

The tunneling of a charge q � 2e clearly shows up in
the exponent 8=g in (8). In addition to this double charg-
ing effect we see from (8) that increasing Ec has two
opposite effects. On the one hand the factor �2�=!R


8=g

decreases, while the �-dependent terms increase. The
latter terms result from a charge relaxation in the
virtual state with one electron of the entangled pair
still being on the SC. The formula (8) is valid if�����������������������������������������
��� Ec
=��� Ec


p
�

�������������
!R=�

p
.

In the other limit where �� !R, e.g., for small R,
we can assume that !Rt0 and !Rt00 � 1 and there-
fore approximate exp���J�t0
 � J��t00
�
 ’ exp�4�=g
 �
!4=gR �t0t00
2=g. In this limit we obtain

I2 � e1��2A�g

�
2�
!R

�
4=g

�
2�
�

�
4=g
; (9)

with A�g
 � �2e��
4=g�4�1=g� 1=2
=12��8=g� 2
.
Here the relative suppression of the current I2 compared
to I1 is proportional to �2�=�
4=g and not to �2�=!R


4=g

as in the case of an infinite �. This is because the virtual
state with a quasiparticle in the SC can last much longer
than /cl, and, as a consequence, the power-law suppres-
sion of the current is weakened since �� !R here. To
our knowledge, the result (9) was not discussed in the
literature so far [27], but similar results are obtained
when SCs are coupled to Luttinger liquids [4]. A large
gap � is therefore crucial to suppress I2.

In the large voltage regime �; �� !R we expect a
Coulomb gap due to a charge q � 2e. Indeed, in the
parameter range j�� 2Ecj � !R and �� j�� Ecj
we obtain for I2 again up to small contributions
�e1�2!R�O�!R=�
 �O�!R=j�� 2Ecj

,

I2 � e1�2 ��� 2Ec
��� 2Ec
: (10)
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FIG. 2. Current ratio I2=I1 (entangler efficiency) and I1 in the
regime �� �; !R and �� Ec;!R as a function of 4=g �
4R=RQ. Chosen parameters: Ec � 0:1 meV, kF%r � 10, � �
0:1, and � � 5 �eV (left plot), � � 15 �eV (right plot). For a
2D SC, I1 and I1=I2 can be multiplied by 10.
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This shows that I2 is small (/!2R=j�� 2Ecj) in
the regime Ec<�<2Ec, whereas I1 is finite
[/F2d�%r
��� Ec
].

Discussion and conclusions.—We now give numeri-
cal values for the current magnitudes and efficiencies
of our entangler. We first discuss the low bias regime
�� �; !R. In Fig. 2 we show the ratio I2=I1(efficiency
of entangler) and I1 for �� Ec;!R as a function of
4=g for realistic system parameters (see caption of
Fig. 2). The plots show that a very efficient entangler
can be expected for lead resistances R & RQ. The total
current is then on the order of I1 * 10 fA. In the large bias
regime �� !R and for Ec < �< 2Ec we obtain
I2=I1 / �kF%r


d�1!2R=�2Ec ��
��� Ec
, where we
assume that 2Ec �� and �� Ec � !R. For � ’ 1:5Ec
and using !R � gEc=1 we obtain approximately
I2=I1 / �kF%r
d�1g2. To have I2=I1 < 1 we require
g2 < 0:01 for d � 3, and g2 < 0:1 for d � 2. Such small
values of g have been produced approximately in Cr leads
[13]. For I1 we obtain I1 ’ e�kF%r


1�d��� Ec
�
2 ’

e�kF%r

1�dEc�

2 ’ 2:5 pA for d � 3 and for the same
parameters as used in Fig. 2. This shows that I1 is much
larger than for low bias voltages, but an efficient entangler
requires high lead resistances R * 10RQ. Our discussion
shows that the proposed device should be realizable
within state-of-the-art techniques. Finally, we note that
the delay time �1=� within a pair is much shorter than
the time separation between subsequent pairs �2e=I1, so
that different pairs do not overlap in time. This is crucial
for detection of entanglement via correlation measure-
ments described in the Introduction.
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