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Fluctuations Do Matter: Large Noise-Enhanced Halos in Charged-Particle Beams
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The formation of beam halos has customarily been described in terms of a particle-core model in
which the space-charge field of the oscillating core drives particles to large amplitudes. This model
involves parametric resonance and predicts a hard upper bound to the orbital amplitude of the halo
particles. We show that the presence of colored noise due to space-charge fluctuations and/or machine
imperfections can eject particles to much larger amplitudes than would be inferred from parametric

resonance alone.
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Beam loss is a major concern for high-current light-ion
accelerators such as are needed to drive high-intensity
spallation neutron sources [1]. Just a tiny impingement,
~1 W/m, could generate radioactivation that would pre-
clude routine, hands-on maintenance [2]. For a 1 mA,
1 GeV light-ion beam, i.e., for baseline beam parameters
of the Spallation Neutron Source (SNS) presently under
construction [3], this criterion translates to just one in 10°
particles lost per meter, a quantity that scales linearly
with average beam current. Accordingly, a comprehensive
understanding of beam-halo formation is imperative.

Early efforts to identify the fundamental mechanisms
of halo formation centered on the use of a ““particle-core”
model [4-6]. The basic recognition was that, if a
uniform-density core is made to pulsate, particles that
initially lay outside the core and that resonate with its
pulsations could reach large amplitudes and form a
“halo.” This led to the identification of parametric reso-
nance as the essential mechanism of halo formation. A
key feature of parametric resonance in the context of the
particle-core model is a hard upper bound to the ampli-
tude that a halo particle can reach [5]. Because the
particle’s orbital frequency is a function of its amplitude,
at sufficiently large amplitude the particle falls out of
resonance with the core and thereby its amplitude ceases
from growing further. The prospect that the beam halo is
“self-collimating” has led to hope that aperture require-
ments for beam-line components might be modest.
Smaller apertures are preferred in that, for example,
they favor higher-efficiency operation of the accelerating
cavities. In turn, a large body of literature has developed
over the past ten years concerning the putative maximum
halo amplitude, e.g., [7-13].

One feature that is unavoidable in real accelerators but
is commonly overlooked in simulations is the presence of
noise. The noise will manifest itself by way of the elec-
tromagnetic fields external to the beam, which then self-
consistently influence the beam’s evolving space-charge
potential. Noise sources could include hardware irregu-
larities that establish fluctuating image-charge forces,
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jitter in power supplies, misalignments and/or asymme-
tries of beam line components, etc. In the context of
simulations, it could also include details in the space-
charge potential that the simulation cannot model pre-
cisely. Moreover, the noise will generally comprise a
superposition of “colored” noise, i.e., that for which the
autocorrelation time is nonzero. For example, the auto-
correlation time of noise in the collective space-charge
potential could be short, say of the order of a plasma
period, whereas for hardware irregularities/misalign-
ments it could be long, say several betatron (orbital)
periods. Herein, by generalizing simple particle-core
models, we show that the presence of colored noise
can potentially boost statistically rare particles to ever-
growing amplitudes by continually kicking them back
into phase with the core oscillation.

Following the ground-breaking work that introduced
the particle-core model [5,6], we consider particles on
radial orbits through an infinitely long, axially symmet-
ric, space-charge-limited (zero tune depression) beam
“core” pulsating at a single frequency due to an imbal-
ance, i.e., mismatch, between the repulsive, collective
space-charge force and the confining external focusing
force. Upon linearizing the beam-envelope equation in
terms of the core-oscillation amplitude, one finds the
solution R(f) =~ R[1 + (M — 1) cosw?], wherein w is the
core-oscillation angular frequency and M = R(0)/R is
the mismatch parameter, ie., the ratio of initial-to-
matched core radii. For the space-charge-limited beam
= +/2Q), where () denotes the external focusing angu-
lar frequency. We fold this harmonically oscillating core
into a dimensionless equation of particle motion:

. O(1 — |x]) O(x[-1D7 _
x+[1_[1+(M—1)coswt]2_ x? }C_O'

(D

The transverse coordinate x is normalized to the radius R
of the matched beam; time is multiplied by ) which
means all frequencies are expressed as multiples of ();
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and O(u) is the Heaviside step function. This model,
henceforth called “Model I,” is simpler and computa-
tionally less expensive than the original particle-core
model [5] but preserves its vital parametric resonance.

Because Model I is strictly one dimensional and con-
tains a step-function discontinuity, we also study a second
model for which the unperturbed beam is a spherically
symmetric configuration of thermal equilibrium (TE)
[14]. Particles orbit in this model, henceforth called
“Model II,” according to

X:_V\I,, W:W0+\Pl,
Wy =307 + O(r), ¥, = u®d(r))sinwt, (2)
rr=x*+y*+ 2% ri = 0.8(x* +y?) + 2%,

in which the external focusing angular frequency is ) =
1.0001/+/3. As explained in Ref. [14], the coordinates and
time are measured in units of Debye length and inverse
plasma angular frequency, so the normalization differs
from that of Model L The self-potential ®(r) corresponds
to “intermediate space charge” (0.36 tune depression
[15]). The potential W is a prolate spheroidal perturba-
tion whose strength corresponds to the parameter u.

To Models I and II we add fluctuations in the form of
Gaussian colored noise such that w — w(f) = @ + Sw(1),
with Sw(7) sampling an Ornstein-Uhlenbeck process. Its
first two moments fully determine the statistical proper-
ties of the noise: (Sw(r)) = 0,{dw()dw(t))) * exp(—|t —
t;1/t.), in which t, denotes the autocorrelation time.
Though we add the noise to the core-oscillation fre-
quency, we also confirmed that adding colored noise to
the external focusing frequency does not significantly
change the results.

After generating a colored-noise signal using an algo-
rithm first presented in Ref. [16], we calculate {|dw|)
which becomes a measure of the noise strength. The
influence of noise on halo formation should in principle
depend on its strength and its autocorrelation time. For
two choices of autocorrelation time, f, = 1.57 and 127, 7
denoting the orbital period of a typical halo particle, we
investigated a broad range of strengths, specifically
107° = {|dw|) =1, to see to what extent the results
may be regarded as generic. Manifestations of colored
noise that a particle might feel are illustrated in Fig. 1.

In a real beam each individual particle will have its
own distinct initial conditions and thus experience a
manifestation of the noise that differs from that seen by
each of the other particles. For example, in the axisym-
metric Model I, each particle initially occupying a thin
annulus centered at radius x(0) will experience noise
differing from that seen by each of the other particles
initially in that annulus because the particles start at
different angular coordinates. The same is true for par-
ticles initially occupying a spherical shell centered on
radius r(0) in Model IL. Accordingly, we adopted a “‘sur-
vey strategy.” Upon choosing initial conditions x(0) and
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FIG. 1. Example manifestations of colored noise along an
orbit for {(|dw|) = 0.01 and for which 7, = 1.57 (top), 127
(center), and for {|6wl|) = 0.1 with 7, = 127 (bottom).

r(0) for Egs. (1) and (2), respectively, and for a specific
choice of noise parameters, we sequentially computed
10000 orbits, each experiencing its own random mani-
festation of the colored noise, and we cataloged the
maximum amplitudes of these orbits. We set the initial
conditions of the orbit in Model I at x(0) = 1.20, x(0) =
0, and in Model II at r(0) = 1.23, #(0) = 0. In the un-
perturbed TE sphere of Model 11, and for realistic proton
beam parameters, there are ~4 X 10° particles per bunch,
i.e., ~0.6 nC [17]. There are ~3 X 10* particles in the
range r = 1.23 = (0.5 X 10™%), a thin spherical shell cen-
tered on r(0), and located well into the Debye tail of the
bunch. Accordingly, the chosen sample size is realistic.

We computed the orbits using a fifth-order Runge-
Kutta integrator with variable time step [18]. We chose
the initial time step to be 1072; the fractional error in the
orbital coordinates and momenta was within 10~° for
Model I and 1077 for Model IL. Smaller initial time steps
yielded only tiny changes in the results that were at-
tributable to the statistical nature of the simulations.

For Model I we chose w = /2 and computed orbits
from Eq. (1) first without, then with, colored noise; we
found that different choices of w do not change the
essential findings. For zero noise, the maximum orbital
amplitude |x,,| does have a hard upper bound in keeping
with parametric-resonance arguments.

For specified noise parameters, we focus on the one
particle out of the sample of 10000 that reaches the
largest amplitude during the integration time of 807, a
time that is representative of the transit time through a
1 GeV proton linac. Results for M = 1.1, 1.3, 1.5, and fixed
t, = 127 are provided in Fig. 2, in which |x,,,| versus
(|6 wl]) is plotted. The figure also shows the average |x|
reached by particles in the sample. One sees that, over a
broad range of noise strengths, rare particles are ejected
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FIG. 2. (top) Largest orbital amplitude in Model I with M =
1.1 (%), 1.3 (), 1.5 (A), and 7. = 127 plotted against {|Sw]).
With zero noise, the orbital amplitudes are 1.20, 2.54, and 2.92
for M = 1.1, 1.3, and 1.5, respectively. (bottom) Same for
Model II with perturbation parameter u = 0.5. With zero
noise, the maximum orbital amplitude is 1.36.

to larger amplitudes relative to parametric resonance
alone. For example, a mere 1% fluctuation in the core-
oscillation frequency roughly doubles the maximum am-
plitude reached compared to the case of zero noise.
Interestingly, we found for ¢, = 1.57 that the results are
very similar. Also, the curves each show a local maxi-
mum; very weak noise has little effect, and very strong
noise results in large kicks that inhibit resonant coupling
between halo particles and the core oscillation.

For Model II, we chose w = 0.5, corresponding to a
root-mean-square mismatch = 1.3, and w = 1.7, a com-
pletely arbitrary driving frequency. Results appear in the
bottom panel of Fig. 2; different choices of w do not
change the essential findings. Models I and II are dis-
tinctly different, yet the influence of the noise on the
maximum orbital amplitudes is qualitatively similar
This is a noteworthy finding in that we constructed
Model II ad hoc, with no predisposition toward matching
the results of Model 1. Accordingly, the role of colored
noise in generating large distended halos in time-
dependent potentials would seem to be generic.

If the number of particles in the sample is increased
with all else being the same, then the largest amplitude
reached by the single special particle increases. As Fig. 3
indicates, once the sample size is sufficiently large, the
maximum amplitude scales quasilogarithmically with
sample size. This trend, heretofore unexplained, was
seen in massive parallelized beam-dynamics simulations
of an earlier design of the SNS linear accelerator that
included various machine imperfections [19]. In runs
involving 10*, then 10°, then 10°, then 107 simulation
particles, the maximum halo extent increased, but
it seemed to approach a limiting value with runs
above 10% particles. Inasmuch as these runs were self-
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FIG. 3. Maximum orbital amplitude vs sample size N with
{|6w|) = 0.004 and ¢, = 127 for Model I with M = 1.5 (top),
and Model II (bottom).

consistent, the phenomenology they reflect is suggestive
of the influence of increasingly fine resolution of details in
the potential that are beyond the scope of a simple
particle-core model. They also exemplify that a large
number of particles is needed to discern the impact of
these details on halo formation and structure.

If the integration time is extended indefinitely, as might
be physically representative of a storage ring, for ex-
ample, then there are statistically rare orbits that continue
to grow to seemingly unlimited amplitudes. Examples of
such orbits in Models I and II appear in Fig. 4. These
long-time orbits exemplify that there is in principle no
hard upper bound to the halo amplitude in the presence of
colored noise.
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FIG. 4. Long-time evolution of a large-amplitude orbit given
noise with {|dw[) = 0.01, ¢, = 127 for Model I with M = 1.5
(top) and Model II (bottom).
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FIG. 5. (top) Example of a rare large-amplitude orbit in the
Plummer potential; u = 0.05, {|dw|) = 0.02, and ¢, = 127.
(bottom) Particle orbit with zero noise.

It remains to explore further the extent to which this
phenomenology applies in real machines. Doing so will
involve further simulations of beams in real beam lines;
as we have seen, machine imperfections will matter. One
possibly fruitful approach is to extract the coarse-
grained, time-dependent potential from the simulations
and then add noise and pursue a statistical analysis of test
particles in parallel to what we have done here. Al-
ternatively, the colored noise may be built directly into
the simulation itself, although the simulation will then
need to incorporate a sufficiently large number of par-
ticles to furnish enough statistics on the halo population.
A realistic manifestation of the colored noise would need
to reflect the machine design, i.e., by properly including
imperfections in the fields and hardware alignment, and
details of the evolving space-charge potential such as a
sufficiently detailed mode spectrum. Of course, as the
beam is accelerated, space charge and its attendant para-
metric resonances become weaker, and their influence on
the halo decreases.

As a relevant aside, we also analyzed this mechanism
in the context of a self-gravitating stellar system for
which environmental noise from surrounding galaxies
will self-consistently influence the dynamics. Specifi-
cally, we considered a perturbed Plummer model, a con-
figuration for which the unperturbed collective potential
scales as (1 + r2/3)7'/2 [20], and we applied the same
procedure described herein for Model II. Though it is a
restoring force, gravity is so weak that, combined with
the noise, only a relatively tiny oscillatory perturbation
suffices to pump stars to very large amplitudes. As Fig. 5
shows, rare particles are ejected to large amplitudes
despite a pronounced dependence of the orbital period
on the amplitude. The main point, the generality of which
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is highlighted by the addition of this ‘‘gravitational”
example, is that colored noise combined with parametric
resonance will drive a statistically small number of par-
ticles to much larger amplitudes than parametric reso-
nance can do on its own. The formation of distended halos
is thus a general by-product of collective relaxation of
nonequilibrium Coulomb systems.
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