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Distribution of Injected Power Fluctuations in Electroconvection
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We report on the distribution spectra of the fluctations in the amount of power injected into a liquid
crystal undergoing electroconvective flow. The probability distribution functions (PDFs) of the fluc-
tuations as well as the magnitude of the fluctuations have been determined in a wide range of imposed
stress both for unconfined and confined flow geometries. These spectra are compared to those found in
other systems held far from equilibrium, and find that in certain conditions we obtain the universal PDF
form reported by S.T. Bramwell et al. [Phys. Rev. Lett. 84, 3744 (2000)]. Moreover, the PDF approaches
this universal form via an interesting mechanism whereby the distribution’s negative tail evolves
towards form in a different manner than the positive tail.
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of the stress a change in PDF has been observed from scales and ".
Fluctuations in systems driven out of equilibrium have
recently attracted considerable attention, particularly
with regard to the probability density function (PDF) of
fluctuations in global quantities. Fluctuations in global
quantities are necessarily the result of many individual
fluctuating modes, thus the first issue is whether the cen-
tral limit theorem, which predicts a Gaussian PDF, holds.
Recent results in a number of disparate systems reveal
non-Gaussian PDFs exhibiting rich and intriguing behav-
ior. Furthermore, the understanding of such PDFs is of
practical importance, not the least because one would like
to predict the probability of exceedingly rare fluctuations
having colossal amplitude (e.g., floods, violent storms,
earthquakes, stockmarket swings). While non-Gaussian
PDFs of fluctuations are intriguing in their own right,
recent results suggest there may exist a universal, non-
Gaussian distribution of global fluctuations. Strikingly,
such a distribution has been found, using no adjusted
parameters or fits, for an astonishing variety of seemingly
unrelated systems: turbulent flow in confined geometry
[1–8], the Danube water level [9], and simulations of the
3D X-Y model at criticality [5,10,11]. In all these systems,
the PDF is substantially skewed, with one tail well de-
scribed by an exponential decay. This distribution is well
described by generalized Fisher-Tippet-Gumbel (gFTG)
distribution [10]. The exponential tail is adduced [5,6,12]
to be due to fluctuations having a length scale comparable
to the system size. Specifically, Ref. [10] refers to inertial
systems in which fluctuations are excited over a range of
length scales. In such systems, the finite range of length
scales leads to a violation of the central limit theorem.
This explanation is supported by measurements on turbu-
lent swirling flow in unconfined geometry [2], in which
no exponential tail has been found and the fluctuations
became Gaussian. Note that all the previously listed
results have been obtained for isotropic fluids.

For flow of anisotropic fluids, velocity fluctuations of
tracer particles have been investigated [13] in the so-
called soft mode turbulence [14], and with the increase
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Lévy to Gaussian via some intermediate distributions
such as the exponential one. However, it should be borne
in mind that these represent local rather than global
measurements. Electrohydrodynamic convection (EHC)
in liquid crystals (LCs) is a unique system in which
abrupt turbulence to turbulence transitions [such as defect
turbulence to dynamic scattering mode 1 (DSM1) or
DSM1 to DSM2] occur at well defined thresholds. The
study of the average injected power and fluctuations in
quantity in EHC has been established in Refs. [15–17].
This method opens new routes in investigations of EHC.
In this Letter we analyze the PDF of fluctuations in an
anisotropic fluid system driven far out of equilibrium.
EHC affords the opportunity of varying the externally
imposed stress over a sufficiently wide range that it is
possible to observe the evolution of the PDF shape.
Furthermore, our system allows detailed studies of the
effects of confinement on the PDF evolution. The latter is
important because the experimental results of Ref. [2]
show substantial, qualitative differences between PDF
forms for fluctuations of global injected power in uncon-
fined and in confined geometries.

In turbulent swirling flow experiments in which the
fluctuations in injected power are measured, the stress
applied to the fluid is characterized by the Reynolds
number (Re). The comparison of PDFs between confined
and unconfined flow was made over a range of Re less
than 10 [2]. In our experiments, the stress applied to the
LC inducing flow is characterized by the dimensionless
potential difference, " � U2=U2

c � 1, where U is the
applied potential difference and Uc is the critical poten-
tial difference necessary to induce flow. This makes di-
rect comparison of swirling flow experiment with EHC
problematic because (a) Re is not subject to external
control, and (b) the liquid crystal’s turbidity and the
submillimeter experimental dimensions make accurate
determinations of the actual flow field (and hence Re)
impossible. Nonetheless, two critical advantages of EHC
are the ability to widely vary both the relevant length
2003 The American Physical Society 264501-1
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FIG. 1 (color online). Temporal dependence of normalized
injected power fluctuations around the mean value hPi for
unconfined flow (offset by 7:5
 10�4) and for confined flow
geometry at " � 42.
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Our experimental setup is described in Ref. [16]. A
sinusoidal voltage signal is amplified and applied across
the LC layer sandwiched between two glass plates. The
current traversing through the LC sample returns to
ground via the field-effect transistor input of a current-
to-voltage preamplifier. The output of this preamplifier is
measured by a lock-in amplifier whose reference signal is
supplied by the original function generator. The in-phase
output of the lock-in is amplified and digitized. For each
experimental point an optical image taken through a
polarizing microscope with shadowgraph technique has
also been recorded. The liquid crystalline mixture
Mischung V with 2:73 wt% dopant has been used, which
is an excellent model material because of its chemical
stability and known material parameters [18]. All the
measurements presented below have been carried out at
temperature T � �50:00� 0:01� �C, where a satisfactory
spatial homogeneity of the sample is ensured [19]. The
LC is encased in sandwich-type cells with planar orien-
tation for both unconfined and confined flow geometry.
For unconfined flow geometry, we chose a cell with
square, etched electrodes having active area A � �6:15�
0:1� mm2 and thickness of d � �33:4� 0:2� �m. In this
geometry, the electric field is present and the convection
takes place within the active area. This area is laterally
bounded by the remainder of the LC, thus the flow and
director fields are not controlled at these boundaries. For
the confined flow geometry, a Mylar gasket with a circu-
lar hole [A � �24:6� 0:6� mm2] was used to confine the
LC between the conductive plates and within the active
area. As far as the basic, flow-inducing Carr-Helfrich
mechanism is concerned, this confinement has no effect;
the most significant effect is expected to be on the defect-
mediated mean flow [20]. The separation between the
plates was d � �80� 20� �m. The previously described
dimensions provide aspect ratios s �

����
A

p
=d 	 74 for the

unconfined flow geometry and s 	 62 for the confined
cell. These values of s are similar enough to make a
quantitative comparison for injected power fluctuations
between the unconfined and confined geometries, know-
ing that the normalized variance of power fluctuations
depends strongly on s [21]. Before performing fluctuation
measurements, the experimental setup was tested by re-
placing the LC sample with a 100 M� Ohmic resistor
(resistivity of the same order of magnitude as our
samples). Fluctuations in the current injected into the
test resistor obey Gaussian statistics with 
P=hPi< 10�5.

Figure 1 shows temporal dependence of the normalized
power fluctuations around the mean value hPi for both
unconfined and confined LC electroconvective flow at
moderate stress: " � 42. We emphasize two features of
these fluctuations. First, the normalized variance of fluc-
tuations 
P=hPi �

����������������������
�P� hPi�2

p
=hPi is of the same order

of magnitude for unconfined and confined flows. We do
not witness the significant increase in 
P=hPi when the
flow is confined as described in Ref. [2]. Second, there is a
qualitative difference between the power fluctuations in
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the two flow geometries. For unconfined flow (at this
value of ") injected power fluctuations are uniform, re-
sulting in almost Gaussian PDF (see below). In contrast,
during confined flow, we observe relatively rare but inter-
mittent fluctuations having large, negative amplitude (at
least 6.5 standard deviations); these negatively skew the
PDF which appears to be well described by the gFTG.

Before discussing the forms of PDF, it is useful to
summarize the results of the optical observations (per-
formed concomitantly with the injected power fluctuation
measurements). In general, the EHC patterns have similar
appearance in unconfined and in confined flow geome-
tries. However, these similar patterns appear at somewhat
different values of " for the two geometries, and they
differ in details within the defect turbulence regime (e.g.,
the grid pattern is observed in unconfined flow but not in
confined flow). In both geometries, as " is increased above
zero the stationary, oblique roll pattern appears. Defect
turbulence (described more in detail below) starts at " 	
0:2 for both flow geometries. In our system, defect turbu-
lence is characterized by low-frequency, persistent oscil-
lations in the autocorrelation function ga�t� of the power
fluctuations [21]. The transition threshold from defect
turbulence to DSM1 is defined as the voltage " at which
the persistent oscillations in ga�t� diminish [21]. This
transition occurs at " 	 7:7 and at " 	 12:5 for the un-
confined and confined flows, respectively. The DSM1 !
DSM2 turbulence transition (involving an abrupt increase
in density of disclination loops) has been detected at " �
"t 	 62 and at "t 	 19:9 for the unconfined and confined
flow, respectively. With a further increase of " no more
transitions are reported in the literature. This is unsur-
prising because above " 	 800 the flow becomes so turbid
that it is impossible to visually detect any further change
in the pattern.

Figures 2 and 3 show PDFs of injected power fluctua-
tions ��P� scaled with their variance 
P as a function
of power around its mean value hPi normalized with

P at different imposed stresses covering a range of
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about 103 for both unconfined (open symbols) and con-
fined flow (closed symbols). The full lines are Gaussian
distributions as denoted in Fig. 2(a) with the same 
P as
experimental results (not fits). The dashed lines are the
gFTG distribution:

��P�
P � K exp�b�x� c� � eb�x�c��a; (1)

where x � �P� hPi�=
P, K � 2:14, a � �=2, b �
0:938, and c � 0:374. This is not a fit: all parameter
values are taken from [10]. This is the distribution re-
ferred to as universal in Ref. [10].

Slightly above EHC threshold, at " 	 0:2, the process
of generation and annihilation of defects (dislocations)
starts which destroys the stationary EHC roll pattern by
breaking the rolls into moving segments and leading to a
state called defect turbulence [22]. Defect turbulence
causes a dramatic increase in the amplitude of power
fluctuations, and the fluctuations become quasiperiodic
with a dominant frequency corresponding to the defect
lifetime [21]. These fluctuations are well described by
Gaussian distribution for both the unconfined and con-
fined flow geometries; see Fig. 2(a).

With a further increase of ", the PDF for unconfined
flow remains Gaussian even above the defect turbu-
lence ! DSM1 transition—see Figs. 2(b) and 2(c). Fig-
ure 2(d) shows PDFs obtained at " � 42 (corresponding
to Fig. 1). In the unconfined flow, we are deeply in DSM1,
and at this " the first systematic departure from the
Gaussian distribution is observed with tails decaying
slower than Gaussian on both sides of the PDF. With
further increase of ", but still staying in DSM1 turbu-
lence, the deviation from the normal distribution becomes
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FIG. 2 (color online). Probability density function for both
unconfined (open symbols) and confined flow (closed symbols)
geometries. Lines show Gaussian and gFTG distributions as
denoted in legend. (a) " � 2: defect turbulence for both ge-
ometry. (b) " � 7:7: DSM1 for unconfined flow and defect
turbulence for confined flow. (c) " � 14: DSM1 for both un-
confined and confined flows. (d) " � 42: DSM1 for unconfined
flow and DSM2 for confined flow.
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even more pronounced [Fig. 3(a)]. At and above "t 	 62,
the PDF for unconfined flow abruptly reverts to Gaussian
[Fig. 3(b)] and remains so for " up to about 860. Above
this value, the PDF deviates again from Gaussian and its
form is much closer to gFTG [10] [cf. Fig. 3(c)]; the PDF
keeps this shape for extremely high " > 1000 [Fig. 3(d),
open symbols, " � 1717].

In stark contrast, in the confined flow geometry, a
systematic deviation from the Gaussian distribution is de-
tected even in the defect turbulence regime, above " 	 4
[closed symbols in Fig. 2(b)]. This deviation reminds us
of the results obtained for swirling flow in confined
geometry [2]. Clearly, the negative tail of PDF for con-
fined flow in Fig. 2(b) is exponential and is in agreement
with the gFTG distribution. The positive tail, however,
remains Gaussian. Thus, at this range of stress we observe
a ‘‘hybrid’’ distribution having a gFTG tail for negative
fluctuations but a Gaussian tail for positive fluctuations.
The deviation from Gaussian distribution (and conver-
gence to gFTG) is even more expressed above the de-
fect turbulence ! DSM1 transition [closed symbols in
Fig. 2(c)], where the positive tail also starts to approach
the gFTG distribution. In contrast to the unconfined flow
geometry, in confined flow the DSM1 ! DSM2 transi-
tion has no noticeable influence on the form of PDF [cf.
Figs. 2(c) and 2(d)] which stays close to gFTG distribu-
tion up to " 	 1000 [over a range of O�103� of imposed
stress] [Figs. 2(d) and 3(a)–3(c)]. Thus, in the confined
geometry, in which the length scale of fluctuations is
bounded from above, we indeed observe the universal
form described in Ref. [10]. At extremely high stresses
(" > 1000), however, the form of PDF changes and the
typical shape is shown in Fig. 3(d) (closed symbols, " �
1424) with heavy tails on both negative and positive sides.
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FIG. 3 (color online). Same as Fig. 2, at higher values of ".
(a) " � 56: DSM1 for unconfined flow and DSM2 for con-
fined flow. (b) " � 79:5: DSM2 for both unconfined and con-
fined flows. (c) " � 865: DSM2 for both unconfined and
confined flows. (d) " > 1000: DSM2 for both unconfined and
confined flows.
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The dramatic difference in PDF between unconfined and
confined flows cannot be optically discerned. That is, even
at low " where shadowgraphy is possible, we can observe
no difference in spatial structure [23].

The Gaussian PDFs in Fig. 2(a) for both confined and
unconfined flow suggest that fluctuations in global in-
jected power arise from many spatially uncorrelated
contributions (defects). However, despite the spatial un-
correlation in defect turbulence, there is still a surprising
degree of temporal order embedded [19,21]. Figures 2(b)
and 2(c) are in agreement with the results of Ref. [2] for
swirling flow: for unconfined flows the PDF is Gaussian;
for confined flow, however, it is much closer to the gFTG
distribution. The PDF for confined flow stays remarkably
close to the gFTG distribution for " varying over 	 103

[Figs. 2(b)–2(d) and 3(a)–3(c), closed symbols]. Above
" 	 1000, however, the PDF changes; rare events of large
amplitude fluctuations no longer follow the gFTG distri-
bution; instead, they form the above-mentioned PDF with
heavy tails [Fig. 3(d)]. For unconfined flow, the PDF
remains Gaussian over a range of " > 102 except in a
narrow range of " just below the threshold of DSM1 !
DSM2 turbulence transition [Figs. 2(d) and 3(a)]. At high
", however, the PDF of unconfined flow also follows the
gFTG distribution [Figs. 3(c) and 3(d)]. Furthermore, the
skewness of the measured distributions is ��0:91� 0:2�
and ��1:0� 0:1� for unconfined (" > 860) and confined
(5< "< 1000), which compares variably with the ex-
pected value for the gFTG of �0:893.

The results discussed above have several implications.
First, the gFTG distribution of global fluctuations is ob-
servable even in unconfined flow, but at substantially
larger imposed stress. This suggests even more strongly
that this distribution may be a universal trend for strongly
fluctuating nonequilibrium systems, whether the flow is
confined or not. Second, when the imposed stress is suffi-
ciently increased, we observe departures from the gFTG
distribution. Thus, this distribution, while exhibiting in-
dications of being universal (in that the same form is
observed for disparate systems), cannot be thought of as a
limiting, ultimate shape, at least for the confined flow.
Interestingly, we have shown that the form of PDF is not
simply dependent on the boundary conditions and the
applied stress, but in our system also depends on turbu-
lence to turbulence transition(s) [cf. Figs. 3(a) and 3(b)].
Of course, such transitions are not common. Last, the
confined flow experiments above reveal a fascinating
mechanism where the PDF transforms as the stress is
increased. Starting with Gaussian at low stress, the PDF
morphs into a hybrid distribution in which the negative
fluctuations follow the exponential decay of the gFTG,
while the positive fluctuations remain Gaussian. As the
stress increases, the positive fluctuations then decay more
quickly than Gaussian, and the gFTG is obtained. We are
unaware of any theoretical explanations of such transi-
tions between PDFs.
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[14] H. Richter, Á. Buka, and I. Rehberg, Phys. Rev. E 51,
5886 (1995); S. Kai, K. Hayashi, and Y. Hidaka, J. Phys.
Chem. 100, 19007 (1996).

[15] T. Kai, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 43, 717
(1977).

[16] J. T. Gleeson, Phys. Rev. E 63, 026306 (2001).
[17] W. I Goldburg, Y.Y. Goldschmidt, and H. Kellay, Phys.

Rev. Lett. 87, 245502 (2001).
[18] J. Shi, C. Wang, V. Surendranath, K. Kang, and J.T.

Gleeson, Liq. Cryst. 29, 877 (2002).
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